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Generalised eigenvectors

( Definition 2.1 — Generalised eigenvector

Suppose A is an eigenvalue of the square matrix A. We say that v
is a generalised eigenvector of A with eigenvalue A, if v is a nonzero
element of the null space of (A — AI)’ for some positive integer j.

@ An eigenvector of A with eigenvalue X is a nonzero element of the
null space of A — \I, so it is also a generalised eigenvector of A.

@ We shall denote by A'(A — A\I)7 the null space of (A — AI).

(Theorem 2.2 — Null spaces eventually stabilise

Let A be a square matrix and let A be an eigenvalue of A. Then the
null spaces N'(A — AI)7 are increasing with j and there is a unique
positive integer k such that V(A — XI)J = N'(A — A\I)* for all j > k.




Column space

(Definition 2.3 — Column space w

The column space of a matrix A is the span of the columns of A. It
consists of all vectors y that have the form y = Ax for some vector .

@ The column space of A is usually denoted by C(A). The dimension of
the column space of A is also known as the rank of A.

@ To find a basis for the column space of a matrix A, we first compute
its reduced row echelon form R. Then the columns of R that contain
pivots form a basis for the column space of R and the corresponding
columns of A form a basis for the column space of A.

@ The dimension of the column space is the number of pivots and the
dimension of the null space is the number of free variables, so

rank + nullity = number of columns.



Column space: Example

@ We find a basis for the column space of the matrix

1 2
A= |3 1
2 1

[SLEEN TN

5 4
2 3
1 5
@ The reduced row echelon form of this matrix is given by

102 0 O
R=]0 110 7
0 00 1 -2

@ Since the pivots of R appear in the 1st, 2nd and 4th columns, a basis
for the column space of A is formed by the corresponding columns

1 2 5
U1 = 3 5 V2 = 1 5 Vg4 = 2
2 1 1
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Invariant subspaces

( Definition 2.4 — Invariant subspace w

Suppose A is an n X n complex matrix and U is a subspace of C". We
say that U is A-invariant, if Au € U for each vector u € U.

@ The one-dimensional invariant subspaces correspond to eigenvectors.
@ The matrix A might represent a reflection of the zy-plane along a line
through the origin. In that case, A has two one-dimensional invariant
subspaces. One is spanned by a vector which is parallel to the line of
reflection and one is spanned by a vector which is perpendicular to it.
@ Similarly, A might represent a rotation in R? around some axis. Such
a matrix has an one-dimensional invariant subspace along the axis of
rotation and a two-dimensional invariant subspace perpendicular to it.
@ Both the null spaces N'(A — AI)7 and the column spaces C(A — \I)’
give rise to A-invariant subspaces. We shall mostly study the former.
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Coordinate vectors

( Theorem 2.5 — Coordinate vectors w

Suppose B is invertible with columns vy, vs,...,v, and A is n X n.
Then the kth column of B~'AB lists the coefficients that one needs
in order to express Avy as a linear combination of vy, vs,...,v,.

@ That is, the kth column of B~1AB is the coordinate vector of Avy,
with respect to the basis v, vs,...,v,. This is true because

n n
A’Uk = Z C;V; <~ ABek = Z c;Be;
i=1 i=1

n
— B_lABek = Zciei.
i=1
@ Suppose, for instance, that Awvy is a linear combination of v; and wvs.
Then the kth column of B~1AB is a linear combination of e; and es,

so its first two entries are nonzero and its other entries are zero.
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Invariant subspaces and blocks

@ Consider a 3 x 3 matrix A which has two invariant subspaces
U = Span{vi,v2},  V = Span{vs}
such that vy, v9, v3 form a basis of R3. We can then write

Avy = ajv1 + azve
Avy = bivy + bovo
Avs = cvg

for some scalars a1, a9, by, bo, c and this implies the identity

al bl
B = [’Ul (%) | ’03] - B_lAB = as bo

C

@ Thus, we get a 2 x 2 block for the 2-dimensional invariant subspace
and an 1 x 1 block for the 1-dimensional invariant subspace.
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\

/Definition 2.6 — Jordan chain

Suppose A is an eigenvalue of the square matrix A. We say that the

vectors v1, Vs, ..., v; form a Jordan chain, if they are nonzero with
_ o Vit1 when i < k
(4 M)”"{ 0  wheni=k }
. %

@ The last vector in a Jordan chain is simply an eigenvector of A.

@ The first vector in a Jordan chain of length k is a vector that lies in
the null space N'(A — AI)¥ but not in the null space V(A — AI)F—1.

@ The span of a Jordan chain is an A-invariant subspace because
Av; = ()\I + A— )\I)’UZ‘ = \v; + Vi1

when i < k and since Avy = Avg. In particular, each Aw; except for
the last one is a linear combination of precisely two vectors.
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Jordan chains: Example 1

N1 o o 4 dile =3
Ny o . . dim Ny — dim N7 = 3
Ny o dim N3 — dim Ny = 1

@ Let ) be an eigenvalue of A and let N; = N'(A — \I)/ for each j. As
we already know, these null spaces are increasing with j. Assume, for
instance, that dim N7y = 3, dim Ny = 6 and dim N3 = 7.

@ We draw a diagram by placing 3 dots in the first row, 6 — 3 = 3 dots
in the second row and 7 — 6 = 1 dot in the third row.

@ The dots in this diagram represent linearly independent vectors and if
a dot represents v, then the dot right above it represents (A — \I)v.

@ Reading the diagram vertically, we conclude that there is one Jordan
chain of length 3 as well as two Jordan chains of length 2.
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Jordan chains: Example 2

Ny o . . . dim N; =4
Ng o o dimNg—dile =2
N3 o dim N3 — dim Ny = 1

o Let )\ be an eigenvalue of A and let N; = N (A — A\I)7 for each j. In
this example, we assume dim N; = 4, dim Ny = 6 and dim N3 = 7.

@ The corresponding diagram includes 4 dots in the first row, 6 —4 =2
dots in the second row and 7 — 6 = 1 dot in the third row.

@ Reading the diagram vertically, we get one Jordan chain of length 3,
one Jordan chain of length 2 and two Jordan chains of length 1.

@ Jordan chains of length 1 are just eigenvectors of A. To find a Jordan
chain of length 3, one needs to find a vector v that lies in N3 but not
in N2. Such a vector generates the chain v, (A — Al )v, (A — \I)%wv.
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Jordan blocks and Jordan form

(Definition 2.7 — Jordan blocks and Jordan form w

A Jordan block with eigenvalue A is a square matrix whose entries are
equal to A on the diagonal, equal to 1 right below the diagonal and
equal to O elsewhere. A Jordan form is a block diagonal matrix that
consists entirely of Jordan blocks.

@ Some typical examples of Jordan blocks are

B\ A
le[)\], Jo = R Js=11 A
- 1 A
@ Two typical examples of Jordan forms are
2 i 1
12 ;111
S = 1 2 ’ J= 1
2 | 2
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Jordan chains <— Jordan blocks

(Theorem 2.8 — Jordan chains and Jordan blocks w

Suppose A is an n X n complex matrix and let B be a matrix whose
columns form a basis of C™ consisting entirely of Jordan chains of A.
Then J = B~'AB is a matrix in Jordan form whose kth Jordan block
has the same size and the same eigenvalue as the kth Jordan chain.

@ For instance, suppose A is 4 x 4 with eigenvalues A =0,0,3,3. If A
has a Jordan chain of length 2 with A = 0 and two Jordan chains of
length 1 with A = 3, then the Jordan form of A is

0

J:lo

3

@ The Jordan form of a square matrix is unique (up to a permutation of
its blocks). There might be several blocks with the same eigenvalue.
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Jordan form: Example 1

@ We compute the Jordan form of the matrix
A= E’ ‘ﬂ .
@ The characteristic polynomial is f(\) = A2 —4X +4 = (A —2)%, so
the only eigenvalue is A = 2. Moreover, it is easy to check that
dimN(A—-21)=1, dimN(A-2I)*=2.
@ The corresponding diagram for the Jordan chains is 3 and we need to

find a Jordan chain of length 2. Pick a vector v; that lies in the null
space of (A — 2I)? but not in the null space of A — 21I.

o Letting va = (A — 2I)v; now gives a Jordan chain v1, v and so

2
B=[v vs] = J:B_lAB:[l 2].
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Jordan form: Example 2, page 1

@ We compute the Jordan form of the matrix

4 -5 2
A=|1 -2 2
2 —6 5

@ In this case, the characteristic polynomial is given by
FO) ==X +70% - 150 +9=—(\—1)(\A—3)%,

so there are two eigenvalues that need to be treated separately.
@ When it comes to the eigenvalue A = 1, one finds that

dmN(A-T)=1, dimN(A-T)*=1.

@ The corresponding diagram for the Jordan chains is e and it only
contains one Jordan chain of length 1. In fact, a Jordan chain of
length 1 is merely an eigenvector v; with eigenvalue A = 1.
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Jordan form: Example 2, page 2

@ When it comes to the eigenvalue A = 3, one finds that
dimN(A-31) =1, dimN(A-3I)*=2.

@ The corresponding diagram for the Jordan chains is 3 and we need to
find a Jordan chain of length 2. Pick a vector vo that lies in the null
space of (A — 31)? but not in the null space of A —3I. Such a vector
gives rise to a Jordan chain ve, v3 with v3 = (A — 31)wvs.

@ In particular, A has a Jordan chain v; with eigenvalue A = 1 and also
a Jordan chain vay, v3 with eigenvalue A = 3, so its Jordan form is

1
B=[vi|vyv3] = J=B'AB= 3
13

@ The chosen vectors v1,v2 are by no means unique. In fact, there are
infinitely many matrices B such that B~'AB is in Jordan form.
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Jordan basis and Jordan form

(Definition 2.9 — Jordan basis w
LA Jordan basis for an n x n complex matrix A is a basis of C" thatJ

consists entirely of Jordan chains of A.

® Finding the Jordan form. Determine the various eigenvalues A\ and
apply the following steps for each A. Compute the numbers

dj = dim N (A — \T)?

until they stabilise and draw a diagram for the Jordan chains. The
lengths of these chains represent the sizes of the Jordan blocks.

® Finding a Jordan basis. Consult the diagram of Jordan chains for
each eigenvalue A and worry about the longest chains first. To find a
chain of length k£ > 1, pick a vector that lies in the kth null space but
not in the previous one and repeatedly multiply it by A — AI. Once
you have a Jordan chain, you may proceed similarly to find the next
longest chain. Chains of length 1 are merely eigenvectors of A.
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Number of Jordan chains

~

/Theorem 2.10 — Number of Jordan chains

Consider the diagram of Jordan chains for an eigenvalue A which has
multiplicity m as a root of the characteristic polynomial of A.

@ The total number of dots in the diagram is equal to m.
@ The total number of Jordan chains is equal to dim N (A — A\I).

@ The first number is also known as the algebraic multiplicity of A. The
second number is also known as the geometric multiplicity of A.

@ When m < 3, one only needs to know these two numbers to find the
diagram of Jordan chains (and thus the sizes of the Jordan blocks).

@ For instance, the diagram for a simple eigenvalue A contains only one
dot, so each simple eigenvalue A contributes a single 1 x 1 block.

@ Similarly, a triple eigenvalue X such that dim AV/(A — A\I) = 2 has a
diagram containing 3 dots but only two chains. Such an eigenvalue
will necessarily contribute one 2 x 2 block and one 1 x 1 block.
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Direct sums

\

/Theorem 2.11 - Linear independence of Jordan chains

Suppose Y1, Y2, - - -, Ym are Jordan chains of a square matrix A. If the
last vectors of the Jordan chains are linearly independent, then all the

\vectors that belong to the Jordan chains are linearly independent. )

\

/Definition 2.12 — Direct sum

Let U,V be subspaces of a vector space W. Their sum U + V is the
set of all vectors w which have the form w = u + v for some u € U
and some v € V. If it happens that U NV = {0}, then we say that
the sum is direct and we denote it by U & V.

- /

~

/Theorem 2.13 — Basis of a direct sum

One may obtain a basis for the direct sum U & V' by appending a basis
\of V to a basis of U. In particular, dim(U & V) = dim U + dim V.
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Primary decomposition theorem

~

(" Theorem 2.14 — Primary decomposition theorem

Given an n x n complex matrix A, one can write
C"=NA- MDD @ - oN(A - NIk,

where A1, Aa,..., A, are the distinct eigenvalues of A and each £; is
\the exponent at which the null spaces V(A — \;I)? stabilise.

/

@ This theorem is mostly of theoretical value. It ensures that one can
always find a basis of C™ by looking at the various null spaces.

@ Each of the null spaces has a basis which consists entirely of Jordan
chains. Since the above sum is direct, we may then merge all these
Jordan chains to obtain a Jordan basis for the given matrix A.

@ Letting B denote the matrix whose columns form a Jordan basis, we
conclude that B is invertible, while J = B~1AB is in Jordan form.
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Similar matrices

\

/Definition 2.15 — Similar matrices

A square matrix A is said to be similar to a square matrix C', if there
_ exists an invertible matrix B such that C' = B~ 'AB. )

/Theorem 2.16 — Similarities of similar matrices N

If two square matrices A and C' are similar, then
@ They have the same characteristic polynomial and eigenvalues.
® They have the same rank, nullity, trace and determinant.

9 ©® The matrices A™ and C™ are similar for any positive integer n.

/Theorem 2.17 — Similarity test )

Two square matrices are similar if and only if their Jordan forms are
the same (up to a permutation of their Jordan blocks).

/

20/26




Properties of Jordan blocks

\

/Theorem 2.18 — Properties of Jordan blocks

Suppose that J is a k x k Jordan block with eigenvalue A.

© The entries of (J — AI)7 are equal to 1, if they lie j steps below
the diagonal, and they are equal to 0, otherwise.

® One has (J — AI)7 =0 if and only if j > k.

- /

@ Loosely speaking, the powers of J — AI are obtained by shifting its
entries downwards one step at a time. For instance, one has

0
10
1

J =X = — (J-A)%=

0
0 0

0 100

10 1 00

@ When it comes to a Jordan block J, it is easy to see that the null

spaces NV'(J — AI)7 are increasing until they eventually stabilise.
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Powers of Jordan blocks

(Theorem 2.19 — Powers of Jordan blocks

Let J be a Jordan block with eigenvalue A # 0. Then the entries of
its nth power J™ are equal to A" on the diagonal, (71‘))\"_1 right below
the diagonal, ()A™ 2 two steps below the diagonal, and so on.

@ For instance, if J is a 2 X 2 Jordan block with eigenvalue A # 0, then

A Y
J‘L )\] = 7 _{m"—l )\”]'

@ Jordan blocks with eigenvalue A = 0 are somewhat different, as

0 0
J=11 0 = J?=10 0 = J3=0.
10 100

In particular, powers of such matrices may be computed as before by
shifting their entries downwards one step at a time.
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Powers of a square matrix

@ Given a complex square matrix A, we first find its Jordan form J as
well as a matrix B such that J = B~'AB is in Jordan form.

@ Letting Ji, Jo, ..., i denote the Jordan blocks of .J, one has

Ji Jr

Iy Ji
The powers J* are easy to compute, as those are powers of Jordan
blocks and we have explicit formulas for computing them.

©® The equation above determines the powers of the Jordan form J. To
find the powers of the original matrix A, we note that

J=B'AB — J"=B'A"B
— A" =BJ"B™ L.
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Matrices and polynomials

/Theorem 2.20 — Matrices and polynomials )
Let A be a square matrix and let g be a polynomial.
@ The matrix A is a root of g if and only if its Jordan form J is a
root of g. In other words, one has g(4) =0 < ¢(J) = 0.
@ If the matrix A is a root of g, then every eigenvalue )\ of A is a
root of g. In other words, one has g(4A) =0 = g(\) =0. )
/Theorem 2.21 — Cayley-Hamilton theorem h
Every square matrix is a root of its characteristic polynomial. )
/Definition 2.22 — Minimal polynomial N
The minimal polynomial m(\) of a square matrix A is defined as the
monic polynomial of smallest degree that has A as a root.

%
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Minimal polynomial

\

/Theorem 2.23 — Properties of the minimal polynomial

Let A be a square matrix and let m(\) be its minimal polynomial.
@ The minimal polynomial divides every polynomial that has A as a
root. In particular, it divides the characteristic polynomial f(A).
® If A1, A2,..., A\, are the distinct eigenvalues of A, then

m(A) = (A= AP = A2)*2 o (A=),

where each exponent k; is given by the size of the largest Jordan
block that corresponds to the eigenvalue \;.

©® The matrix A is diagonalisable if and only if the factors of m(\)
are all linear, namely if and only if k; = 1 for each 1.

%

@ For instance, a square matrix A such that A3 = A is diagonalisable
because its minimal polynomial divides A3 — XA = A(A — 1)(A + 1).
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Minimal polynomial: Example

@ Suppose A is a matrix with characteristic and minimal polynomials
FO)==(A =221 —-47°  m)=\-2)(A-4)%

@ Then A is a 5 x 5 matrix that has two distinct eigenvalues. Let us
find its Jordan form by looking at each eigenvalue separately.

@ When it comes to the eigenvalue A\; = 2, we have k1 = 1 and so the
largest Jordan block is 1 x 1. Since A\; = 2 is a double eigenvalue, we
must thus have two 1 x 1 Jordan blocks with this eigenvalue.

@ When it comes to the eigenvalue Ao = 4, we have ko = 2 and so the
largest Jordan block is 2 x 2. Since Ay = 4 is a triple eigenvalue, it
contributes one 2 x 2 Jordan block and one 1 x 1 Jordan block.

@ In other words, the Jordan form of A consists of the blocks

EE P
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