Chapter 2. Jordan forms Lecture notes for MA1212

P. Karageorgis

pete@maths.tcd.ie

Definition 2.1 – Generalised eigenvector

Suppose λ is an eigenvalue of the square matrix A. We say that v is a generalised eigenvector of A with eigenvalue λ , if v is a nonzero element of the null space of $(A - \lambda I)^j$ for some positive integer j.

- An eigenvector of A with eigenvalue λ is a nonzero element of the null space of A − λI, so it is also a generalised eigenvector of A.
- We shall denote by $\mathcal{N}(A \lambda I)^j$ the null space of $(A \lambda I)^j$.

Theorem 2.2 – Null spaces eventually stabilise

Let A be a square matrix and let λ be an eigenvalue of A. Then the null spaces $\mathcal{N}(A - \lambda I)^j$ are increasing with j and there is a unique positive integer k such that $\mathcal{N}(A - \lambda I)^j = \mathcal{N}(A - \lambda I)^k$ for all $j \geq k$.

Definition 2.3 – Column space

The column space of a matrix A is the span of the columns of A. It consists of all vectors y that have the form y = Ax for some vector x.

- The column space of A is usually denoted by C(A). The dimension of the column space of A is also known as the rank of A.
- To find a basis for the column space of a matrix A, we first compute its reduced row echelon form R. Then the columns of R that contain pivots form a basis for the column space of R and the corresponding columns of A form a basis for the column space of A.
- The dimension of the column space is the number of pivots and the dimension of the null space is the number of free variables, so

rank + nullity = number of columns.

Column space: Example

• We find a basis for the column space of the matrix

$$A = \begin{bmatrix} 1 & 2 & 4 & 5 & 4 \\ 3 & 1 & 7 & 2 & 3 \\ 2 & 1 & 5 & 1 & 5 \end{bmatrix}.$$

• The reduced row echelon form of this matrix is given by

$$R = \begin{bmatrix} \mathbf{1} & 0 & 2 & 0 & 0 \\ 0 & \mathbf{1} & 1 & 0 & 7 \\ 0 & 0 & 0 & \mathbf{1} & -2 \end{bmatrix}$$

• Since the pivots of R appear in the 1st, 2nd and 4th columns, a basis for the column space of A is formed by the corresponding columns

$$\boldsymbol{v}_1 = \begin{bmatrix} 1\\3\\2 \end{bmatrix}, \quad \boldsymbol{v}_2 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \quad \boldsymbol{v}_4 = \begin{bmatrix} 5\\2\\1 \end{bmatrix}$$

Definition 2.4 – Invariant subspace

Suppose A is an $n \times n$ complex matrix and U is a subspace of \mathbb{C}^n . We say that U is A-invariant, if $Au \in U$ for each vector $u \in U$.

- The one-dimensional invariant subspaces correspond to eigenvectors.
- The matrix A might represent a reflection of the xy-plane along a line through the origin. In that case, A has two one-dimensional invariant subspaces. One is spanned by a vector which is parallel to the line of reflection and one is spanned by a vector which is perpendicular to it.
- Similarly, A might represent a rotation in ℝ³ around some axis. Such a matrix has an one-dimensional invariant subspace along the axis of rotation and a two-dimensional invariant subspace perpendicular to it.
- Both the null spaces $\mathcal{N}(A \lambda I)^j$ and the column spaces $\mathcal{C}(A \lambda I)^j$ give rise to A-invariant subspaces. We shall mostly study the former.

Theorem 2.5 – Coordinate vectors

Suppose B is invertible with columns v_1, v_2, \ldots, v_n and A is $n \times n$. Then the kth column of $B^{-1}AB$ lists the coefficients that one needs in order to express Av_k as a linear combination of v_1, v_2, \ldots, v_n .

• That is, the kth column of $B^{-1}AB$ is the coordinate vector of Av_k with respect to the basis v_1, v_2, \ldots, v_n . This is true because

$$A\boldsymbol{v}_{k} = \sum_{i=1}^{n} c_{i}\boldsymbol{v}_{i} \quad \Longleftrightarrow \quad AB\boldsymbol{e}_{k} = \sum_{i=1}^{n} c_{i}B\boldsymbol{e}_{i}$$
$$\iff \quad B^{-1}AB\boldsymbol{e}_{k} = \sum_{i=1}^{n} c_{i}\boldsymbol{e}_{i}.$$

 Suppose, for instance, that Av_k is a linear combination of v₁ and v₂. Then the kth column of B⁻¹AB is a linear combination of e₁ and e₂, so its first two entries are nonzero and its other entries are zero.

Invariant subspaces and blocks

• Consider a 3×3 matrix A which has two invariant subspaces

$$U = \operatorname{Span}\{v_1, v_2\}, \qquad V = \operatorname{Span}\{v_3\}$$

such that v_1, v_2, v_3 form a basis of \mathbb{R}^3 . We can then write

$$\left\{\begin{array}{l}A\boldsymbol{v}_1 = a_1\boldsymbol{v}_1 + a_2\boldsymbol{v}_2\\A\boldsymbol{v}_2 = b_1\boldsymbol{v}_1 + b_2\boldsymbol{v}_2\\A\boldsymbol{v}_3 = c\boldsymbol{v}_3\end{array}\right\}$$

for some scalars a_1, a_2, b_1, b_2, c and this implies the identity

$$B = \begin{bmatrix} \boldsymbol{v}_1 \ \boldsymbol{v}_2 \mid \boldsymbol{v}_3 \end{bmatrix} \implies B^{-1}AB = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ \hline & & c \end{bmatrix}$$

• Thus, we get a 2 × 2 block for the 2-dimensional invariant subspace and an 1 × 1 block for the 1-dimensional invariant subspace.

Jordan chains

Definition 2.6 – Jordan chain

Suppose λ is an eigenvalue of the square matrix A. We say that the vectors v_1, v_2, \ldots, v_k form a Jordan chain, if they are nonzero with

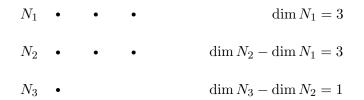
$$(A - \lambda I)\boldsymbol{v}_i = \left\{ \begin{array}{cc} \boldsymbol{v}_{i+1} & \text{when } i < k \\ 0 & \text{when } i = k \end{array} \right\}$$

- The last vector in a Jordan chain is simply an eigenvector of A.
- The first vector in a Jordan chain of length k is a vector that lies in the null space $\mathcal{N}(A \lambda I)^k$ but not in the null space $\mathcal{N}(A \lambda I)^{k-1}$.
- The span of a Jordan chain is an A-invariant subspace because

$$A\boldsymbol{v}_i = (\lambda I + A - \lambda I)\boldsymbol{v}_i = \lambda \boldsymbol{v}_i + \boldsymbol{v}_{i+1}$$

when i < k and since $Av_k = \lambda v_k$. In particular, each Av_i except for the last one is a linear combination of precisely two vectors.

Jordan chains: Example 1



- Let λ be an eigenvalue of A and let $N_j = \mathcal{N}(A \lambda I)^j$ for each j. As we already know, these null spaces are increasing with j. Assume, for instance, that dim $N_1 = 3$, dim $N_2 = 6$ and dim $N_3 = 7$.
- We draw a diagram by placing 3 dots in the first row, 6 − 3 = 3 dots in the second row and 7 − 6 = 1 dot in the third row.
- The dots in this diagram represent linearly independent vectors and if
 a dot represents *v*, then the dot right above it represents (*A* − λ*I*)*v*.
- Reading the diagram vertically, we conclude that there is one Jordan chain of length 3 as well as two Jordan chains of length 2.

Jordan chains: Example 2

N_1	•	•	•	•	$\dim N_1 = 4$
N_2	•	•			$\dim N_2 - \dim N_1 = 2$
N_3	•				$\dim N_3 - \dim N_2 = 1$

- Let λ be an eigenvalue of A and let $N_j = \mathcal{N}(A \lambda I)^j$ for each j. In this example, we assume dim $N_1 = 4$, dim $N_2 = 6$ and dim $N_3 = 7$.
- The corresponding diagram includes 4 dots in the first row, 6-4=2 dots in the second row and 7-6=1 dot in the third row.
- Reading the diagram vertically, we get one Jordan chain of length 3, one Jordan chain of length 2 and two Jordan chains of length 1.
- Jordan chains of length 1 are just eigenvectors of A. To find a Jordan chain of length 3, one needs to find a vector v that lies in N₃ but not in N₂. Such a vector generates the chain v, (A − λI)v, (A − λI)²v.

Jordan blocks and Jordan form

Definition 2.7 – Jordan blocks and Jordan form

A Jordan block with eigenvalue λ is a square matrix whose entries are equal to λ on the diagonal, equal to 1 right below the diagonal and equal to 0 elsewhere. A Jordan form is a block diagonal matrix that consists entirely of Jordan blocks.

• Some typical examples of Jordan blocks are

$$J_1 = \begin{bmatrix} \lambda \end{bmatrix}, \qquad J_2 = \begin{bmatrix} \lambda \\ 1 & \lambda \end{bmatrix}, \qquad J_3 = \begin{bmatrix} \lambda \\ 1 & \lambda \\ & 1 & \lambda \end{bmatrix}$$

• Two typical examples of Jordan forms are

$$J = \begin{bmatrix} 2 & & & \\ 1 & 2 & & \\ & 1 & 2 & \\ \hline & & & 2 \end{bmatrix}, \qquad J' = \begin{bmatrix} 1 & & & \\ 1 & 1 & & \\ \hline & & 1 & \\ & & & 1 \end{bmatrix}$$

Theorem 2.8 – Jordan chains and Jordan blocks

Suppose A is an $n \times n$ complex matrix and let B be a matrix whose columns form a basis of \mathbb{C}^n consisting entirely of Jordan chains of A. Then $J = B^{-1}AB$ is a matrix in Jordan form whose kth Jordan block has the same size and the same eigenvalue as the kth Jordan chain.

For instance, suppose A is 4 × 4 with eigenvalues λ = 0, 0, 3, 3. If A has a Jordan chain of length 2 with λ = 0 and two Jordan chains of length 1 with λ = 3, then the Jordan form of A is

$$J = \begin{bmatrix} 0 & & \\ 1 & 0 & \\ \hline & & 3 \\ \hline & & & 3 \end{bmatrix}$$

• The Jordan form of a square matrix is unique (up to a permutation of its blocks). There might be several blocks with the same eigenvalue.

Jordan form: Example 1

• We compute the Jordan form of the matrix

$$A = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}.$$

• The characteristic polynomial is $f(\lambda) = \lambda^2 - 4\lambda + 4 = (\lambda - 2)^2$, so the only eigenvalue is $\lambda = 2$. Moreover, it is easy to check that

$$\dim \mathcal{N}(A-2I) = 1, \qquad \dim \mathcal{N}(A-2I)^2 = 2.$$

- The corresponding diagram for the Jordan chains is \bullet and we need to find a Jordan chain of length 2. Pick a vector v_1 that lies in the null space of $(A 2I)^2$ but not in the null space of A 2I.
- Letting $oldsymbol{v}_2=(A-2I)oldsymbol{v}_1$ now gives a Jordan chain $oldsymbol{v}_1,oldsymbol{v}_2$ and so

$$B = \begin{bmatrix} \boldsymbol{v}_1 \ \boldsymbol{v}_2 \end{bmatrix} \implies J = B^{-1}AB = \begin{bmatrix} 2 \\ 1 & 2 \end{bmatrix}.$$

Jordan form: Example 2, page 1

• We compute the Jordan form of the matrix

$$A = \begin{bmatrix} 4 & -5 & 2 \\ 1 & -2 & 2 \\ 2 & -6 & 5 \end{bmatrix}$$

• In this case, the characteristic polynomial is given by

$$f(\lambda) = -\lambda^3 + 7\lambda^2 - 15\lambda + 9 = -(\lambda - 1)(\lambda - 3)^2,$$

so there are two eigenvalues that need to be treated separately. \bullet When it comes to the eigenvalue $\lambda=1,$ one finds that

$$\dim \mathcal{N}(A-I) = 1, \qquad \dim \mathcal{N}(A-I)^2 = 1.$$

The corresponding diagram for the Jordan chains is • and it only contains one Jordan chain of length 1. In fact, a Jordan chain of length 1 is merely an eigenvector v₁ with eigenvalue λ = 1.

Jordan form: Example 2, page 2

• When it comes to the eigenvalue $\lambda = 3$, one finds that

$$\dim \mathcal{N}(A-3I) = 1, \qquad \dim \mathcal{N}(A-3I)^2 = 2.$$

- The corresponding diagram for the Jordan chains is [●] and we need to find a Jordan chain of length 2. Pick a vector v₂ that lies in the null space of (A 3I)² but not in the null space of A 3I. Such a vector gives rise to a Jordan chain v₂, v₃ with v₃ = (A 3I)v₂.
- In particular, A has a Jordan chain v_1 with eigenvalue $\lambda = 1$ and also a Jordan chain v_2, v_3 with eigenvalue $\lambda = 3$, so its Jordan form is

$$B = \begin{bmatrix} \boldsymbol{v}_1 \mid \boldsymbol{v}_2 \mid \boldsymbol{v}_3 \end{bmatrix} \implies J = B^{-1}AB = \begin{bmatrix} 1 & & \\ & 3 & \\ & 1 & 3 \end{bmatrix}$$

• The chosen vectors v_1, v_2 are by no means unique. In fact, there are infinitely many matrices B such that $B^{-1}AB$ is in Jordan form.

Definition 2.9 – Jordan basis

A Jordan basis for an $n \times n$ complex matrix A is a basis of \mathbb{C}^n that consists entirely of Jordan chains of A.

 Finding the Jordan form. Determine the various eigenvalues λ and apply the following steps for each λ. Compute the numbers

$$d_j = \dim \mathcal{N}(A - \lambda I)^j$$

until they stabilise and draw a diagram for the Jordan chains. The lengths of these chains represent the sizes of the Jordan blocks.

Pinding a Jordan basis. Consult the diagram of Jordan chains for each eigenvalue λ and worry about the longest chains first. To find a chain of length k > 1, pick a vector that lies in the kth null space but not in the previous one and repeatedly multiply it by A - λI. Once you have a Jordan chain, you may proceed similarly to find the next longest chain. Chains of length 1 are merely eigenvectors of A.

Theorem 2.10 – Number of Jordan chains

Consider the diagram of Jordan chains for an eigenvalue λ which has multiplicity m as a root of the characteristic polynomial of A.

- **1** The total number of dots in the diagram is equal to m.
- 2) The total number of Jordan chains is equal to $\dim \mathcal{N}(A \lambda I)$.
- The first number is also known as the algebraic multiplicity of λ. The second number is also known as the geometric multiplicity of λ.
- When $m \leq 3$, one only needs to know these two numbers to find the diagram of Jordan chains (and thus the sizes of the Jordan blocks).
- For instance, the diagram for a simple eigenvalue λ contains only one dot, so each simple eigenvalue λ contributes a single 1×1 block.
- Similarly, a triple eigenvalue λ such that dim $\mathcal{N}(A \lambda I) = 2$ has a diagram containing 3 dots but only two chains. Such an eigenvalue will necessarily contribute one 2×2 block and one 1×1 block.

Direct sums

Theorem 2.11 – Linear independence of Jordan chains

Suppose $\gamma_1, \gamma_2, \ldots, \gamma_m$ are Jordan chains of a square matrix A. If the last vectors of the Jordan chains are linearly independent, then all the vectors that belong to the Jordan chains are linearly independent.

Definition 2.12 – Direct sum

Let U, V be subspaces of a vector space W. Their sum U + V is the set of all vectors w which have the form w = u + v for some $u \in U$ and some $v \in V$. If it happens that $U \cap V = \{0\}$, then we say that the sum is direct and we denote it by $U \oplus V$.

Theorem 2.13 – Basis of a direct sum

One may obtain a basis for the direct sum $U \oplus V$ by appending a basis of V to a basis of U. In particular, $\dim(U \oplus V) = \dim U + \dim V$.

Primary decomposition theorem

Theorem 2.14 – Primary decomposition theorem

Given an $n \times n$ complex matrix A, one can write

$$\mathbb{C}^n = \mathcal{N}(A - \lambda_1 I)^{k_1} \oplus \cdots \oplus \mathcal{N}(A - \lambda_p I)^{k_p},$$

where $\lambda_1, \lambda_2, \ldots, \lambda_p$ are the distinct eigenvalues of A and each k_i is the exponent at which the null spaces $\mathcal{N}(A - \lambda_i I)^j$ stabilise.

- This theorem is mostly of theoretical value. It ensures that one can always find a basis of \mathbb{C}^n by looking at the various null spaces.
- Each of the null spaces has a basis which consists entirely of Jordan chains. Since the above sum is direct, we may then merge all these Jordan chains to obtain a Jordan basis for the given matrix A.
- Letting B denote the matrix whose columns form a Jordan basis, we conclude that B is invertible, while $J = B^{-1}AB$ is in Jordan form.

Definition 2.15 – Similar matrices

A square matrix A is said to be similar to a square matrix C, if there exists an invertible matrix B such that $C = B^{-1}AB$.

Theorem 2.16 – Similarities of similar matrices

If two square matrices \boldsymbol{A} and \boldsymbol{C} are similar, then

- They have the same characteristic polynomial and eigenvalues.
- O They have the same rank, nullity, trace and determinant.
- **3** The matrices A^n and C^n are similar for any positive integer n.

Theorem 2.17 – Similarity test

Two square matrices are similar if and only if their Jordan forms are the same (up to a permutation of their Jordan blocks).

Properties of Jordan blocks

Theorem 2.18 – Properties of Jordan blocks

Suppose that J is a $k \times k$ Jordan block with eigenvalue λ .

1 The entries of $(J - \lambda I)^j$ are equal to 1, if they lie j steps below the diagonal, and they are equal to 0, otherwise.

2 One has
$$(J - \lambda I)^j = 0$$
 if and only if $j \ge k$.

• Loosely speaking, the powers of $J - \lambda I$ are obtained by shifting its entries downwards one step at a time. For instance, one has

$$J - \lambda I = \begin{bmatrix} 0 & & \\ 1 & 0 & \\ & 1 & 0 \\ & & 1 & 0 \end{bmatrix} \implies (J - \lambda I)^2 = \begin{bmatrix} 0 & & \\ 0 & 0 & \\ 1 & 0 & 0 \\ & 1 & 0 & 0 \end{bmatrix}$$

• When it comes to a Jordan block J, it is easy to see that the null spaces $\mathcal{N}(J - \lambda I)^j$ are increasing until they eventually stabilise.

Theorem 2.19 – Powers of Jordan blocks

Let J be a Jordan block with eigenvalue $\lambda \neq 0$. Then the entries of its nth power J^n are equal to λ^n on the diagonal, $\binom{n}{1}\lambda^{n-1}$ right below the diagonal, $\binom{n}{2}\lambda^{n-2}$ two steps below the diagonal, and so on.

• For instance, if J is a 2×2 Jordan block with eigenvalue $\lambda \neq 0,$ then

$$J = \begin{bmatrix} \lambda & \\ 1 & \lambda \end{bmatrix} \quad \Longrightarrow \quad J^n = \begin{bmatrix} \lambda^n & \\ n\lambda^{n-1} & \lambda^n \end{bmatrix}.$$

• Jordan blocks with eigenvalue $\lambda = 0$ are somewhat different, as

$$J = \begin{bmatrix} 0 & & \\ 1 & 0 & \\ & 1 & 0 \end{bmatrix} \implies J^2 = \begin{bmatrix} 0 & & \\ 0 & 0 & \\ 1 & 0 & 0 \end{bmatrix} \implies J^3 = 0.$$

In particular, powers of such matrices may be computed as before by shifting their entries downwards one step at a time.

Powers of a square matrix

- **1** Given a complex square matrix A, we first find its Jordan form J as well as a matrix B such that $J = B^{-1}AB$ is in Jordan form.
- **2** Letting J_1, J_2, \ldots, J_k denote the Jordan blocks of J, one has

$$J = \begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_k \end{bmatrix} \implies J^n = \begin{bmatrix} J_1^n & & & \\ & J_2^n & & \\ & & \ddots & \\ & & & J_k^n \end{bmatrix}$$

The powers J_i^n are easy to compute, as those are powers of Jordan blocks and we have explicit formulas for computing them.

S The equation above determines the powers of the Jordan form J. To find the powers of the original matrix A, we note that

$$J = B^{-1}AB \implies J^n = B^{-1}A^nB$$
$$\implies A^n = BJ^nB^{-1}.$$

Theorem 2.20 – Matrices and polynomials

Let A be a square matrix and let g be a polynomial.

- **1** The matrix A is a root of g if and only if its Jordan form J is a root of g. In other words, one has $g(A) = 0 \iff g(J) = 0$.
- 2 If the matrix A is a root of g, then every eigenvalue λ of A is a root of g. In other words, one has $g(A) = 0 \implies g(\lambda) = 0$.

Theorem 2.21 – Cayley-Hamilton theorem

Every square matrix is a root of its characteristic polynomial.

Definition 2.22 – Minimal polynomial

The minimal polynomial $m(\lambda)$ of a square matrix A is defined as the monic polynomial of smallest degree that has A as a root.

Minimal polynomial

Theorem 2.23 – Properties of the minimal polynomial

Let A be a square matrix and let $m(\lambda)$ be its minimal polynomial.

- **1** The minimal polynomial divides every polynomial that has A as a root. In particular, it divides the characteristic polynomial $f(\lambda)$.
- **2** If $\lambda_1, \lambda_2, \ldots, \lambda_p$ are the distinct eigenvalues of A, then

$$m(\lambda) = (\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} \cdots (\lambda - \lambda_p)^{k_p},$$

where each exponent k_i is given by the size of the largest Jordan block that corresponds to the eigenvalue λ_i .

- **③** The matrix A is diagonalisable if and only if the factors of $m(\lambda)$ are all linear, namely if and only if $k_i = 1$ for each *i*.
- For instance, a square matrix A such that $A^3 = A$ is diagonalisable because its minimal polynomial divides $\lambda^3 \lambda = \lambda(\lambda 1)(\lambda + 1)$.

Minimal polynomial: Example

• Suppose A is a matrix with characteristic and minimal polynomials

$$f(\lambda) = -(\lambda - 2)^2 (\lambda - 4)^3, \qquad m(\lambda) = (\lambda - 2)(\lambda - 4)^2.$$

- Then A is a 5 × 5 matrix that has two distinct eigenvalues. Let us find its Jordan form by looking at each eigenvalue separately.
- When it comes to the eigenvalue $\lambda_1 = 2$, we have $k_1 = 1$ and so the largest Jordan block is 1×1 . Since $\lambda_1 = 2$ is a double eigenvalue, we must thus have two 1×1 Jordan blocks with this eigenvalue.
- When it comes to the eigenvalue $\lambda_2 = 4$, we have $k_2 = 2$ and so the largest Jordan block is 2×2 . Since $\lambda_2 = 4$ is a triple eigenvalue, it contributes one 2×2 Jordan block and one 1×1 Jordan block.
- $\bullet\,$ In other words, the Jordan form of A consists of the blocks

$$\begin{bmatrix} 2 \end{bmatrix}, \begin{bmatrix} 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \end{bmatrix}.$$