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Recursive relations involving two terms

A recursive relation expresses each term of a sequence x1, x2, . . . as a
function of the previous terms. One generally prefers to have a closed
formula, namely one that expresses xn as a function of n alone.

For instance, suppose that the sequences xn, yn are such that
{

xn = 2xn−1 + 4yn−1

yn = 5xn−1 + 3yn−1

}

.

Letting un denote the vector of unknowns, one can then write

un =

[

xn
yn

]

=⇒ un =

[

2 4
5 3

] [

xn−1

yn−1

]

= Aun−1

for some 2× 2 matrix A. This equation is easily seen to imply that

un = Aun−1 = A2
un−2 = . . . = An

u0.

Thus, one needs to compute An in order to obtain a closed formula.
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Recursive relations involving three or more terms

A recursive relation may involve several consecutive terms such as

xn+3 = xn+2 + 5xn+1 + 3xn.

This relation can be handled exactly as before, although one needs to
keep track of three terms in order to determine the next one.

Letting un consist of three consecutive terms, we can now write

un =





xn+1

xn+2

xn+3



 =⇒ un =





0 1 0
0 0 1
3 5 1









xn
xn+1

xn+2



 = Aun−1

for some 3× 3 matrix A. This equation is easily seen to imply that

un = Aun−1 = A2
un−2 = . . . = An

u0.

Once we are able to compute powers of the matrix A, we can then
obtain a closed formula for un and also one for the sequence xn.
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Powers of diagonalisable matrices

Definition 1.1 – Diagonalisable matrix

A square matrix A is called diagonalisable, if there exists an invertible
matrix B such that D = B−1AB is diagonal.

To compute powers of a diagonal matrix D, one notes that

D =











λ1

λ2

. . .

λk











=⇒ Dn =











λn
1

λn
2

. . .

λn

k











.

To compute powers of a diagonalisable matrix A, one notes that

D = B−1AB =⇒ Dn = B−1AnB

=⇒ An = BDnB−1.

This is an explicit formula that relates powers of A to powers of D.
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Eigenvalues and eigenvectors

Theorem 1.2 – Diagonalisation

Let A be an n × n matrix. Then B−1AB is diagonal with diagonal
entries λ1, λ2, . . . , λn if and only if the columns v1,v2, . . . ,vn of B are
linearly independent vectors such that Avi = λivi for each i.

Definition 1.3 – Eigenvalues and eigenvectors

Suppose A is a square matrix. A vector v is called an eigenvector of A
with eigenvalue λ, if v is nonzero with Av = λv.

The ith column of a matrix A is given by Aei, where ei is the vector
whose ith entry is equal to 1 and all other entries are equal to 0.

According to the theorem, an n× n matrix is diagonalisable if and
only if it has n linearly independent eigenvectors.

We shall first focus on finding the eigenvalues λ. Once we know the
eigenvalues, we may then find the eigenvectors by solving Av = λv.
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Finding the eigenvalues of a matrix

Definition 1.4 – Characteristic polynomial

The characteristic polynomial of a square matrix A is defined by

f(λ) = det(A− λI).

The roots of this polynomial are the eigenvalues of the matrix A.

Theorem 1.5 – Eigenvalues of simple matrices

1 The eigenvalues of a 2× 2 matrix A are the roots of

f(λ) = λ2 − (trA)λ+ detA,

where trA is the trace of A, the sum of its diagonal entries.

2 If A is either a lower triangular or an upper triangular matrix,
then the eigenvalues of A are the diagonal entries of A.
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Example: A diagonalisable 2× 2 matrix, page 1

We show that the matrix A is diagonalisable in the case that

A =

[

2 1
4 5

]

.

We need to check that A has two linearly independent eigenvectors.
The eigenvalues of A are the roots of the characteristic polynomial

f(λ) = λ2 − (trA)λ+ detA = λ2 − 7λ+ 6

= (λ− 1)(λ− 6).

When λ = 1, eigenvectors satisfy the system Av = v, so we get

(A− I)v = 0 =⇒

[

1 1
4 4

] [

x
y

]

=

[

0
0

]

=⇒ x+ y = 0.

That is, every eigenvector with eigenvalue λ = 1 has the form

v =

[

−y
y

]

= y

[

−1
1

]

, y 6= 0.
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Example: A diagonalisable 2× 2 matrix, page 2

When λ = 6, eigenvectors satisfy the system Av = 6v, so we get

(A− 6I)v = 0 =⇒

[

−4 1
4 −1

] [

x
y

]

=

[

0
0

]

=⇒ 4x− y = 0.

That is, every eigenvector with eigenvalue λ = 6 has the form

v =

[

x
4x

]

= x

[

1
4

]

, x 6= 0.

Since A has two distinct eigenvectors, we may now easily check that

B =

[

−1 1
1 4

]

=⇒ B−1AB =

[

1
6

]

.

This is a typical application of the general theory. If the columns of B
are eigenvectors with eigenvalues λ1, λ2, then B−1AB is a diagonal
matrix whose diagonal entries are λ1, λ2.
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Example: A non-diagonalisable 2× 2 matrix

We show that the matrix A is not diagonalisable in the case that

A =

[

3 4
−1 −1

]

.

The eigenvalues of A are the roots of the characteristic polynomial

f(λ) = λ2 − (trA)λ+ detA = λ2 − 2λ+ 1 = (λ− 1)2,

so the only eigenvalue is λ = 1. The eigenvectors satisfy Av = v and

(A− I)v = 0 =⇒

[

2 4
−1 −2

] [

x
y

]

=

[

0
0

]

=⇒ x+ 2y = 0.

In other words, every eigenvector of A must have the form

v =

[

−2y
y

]

= y

[

−2
1

]

, y 6= 0.

Since we only found one eigenvector, A is not diagonalisable.
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Solving polynomial equations

Theorem 1.6 – Rational root test

Consider a polynomial f(x) with integer coefficients, say

f(x) = anx
n + . . .+ a1x+ a0.

Every rational root of f(x) has the form p/q, where p, q are relatively
prime integers such that p divides a0 and q divides an.

Theorem 1.7 – Factor theorem

If a polynomial f(x) has x = α as a root, then it also has x − α as a
factor, namely f(x) = (x− α) · g(x) for some polynomial g(x).

For instance, let f(x) = x3 − 3x− 2. The only possible rational roots
are x = ±1 and x = ±2. Noting that x = −1 is a root, we get

f(x) = (x+ 1)(x2 − x− 2) = (x+ 1)(x+ 1)(x− 2).
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Example: An integer 3× 3 matrix

As a typical example, we compute the eigenvalues of the matrix

A =





1 0 1
2 3 1
1 1 2



 .

In this case, the characteristic polynomial of A is given by

f(λ) = det





1− λ 0 1
2 3− λ 1
1 1 2− λ



 = −λ3 + 6λ2 − 9λ+ 4.

The only possible rational roots are λ = ±1,±2,±4. Going through
this list, one easily finds that λ = 1 is a root and that

f(λ) = −(λ− 1)(λ2 − 5λ+ 4) = −(λ− 1)(λ− 1)(λ− 4).

Thus, λ = 1 is a double eigenvalue and λ = 4 is a simple eigenvalue.
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Example: A rational 3× 3 matrix

We apply the same method to find the eigenvalues of the matrix

A =





1/2 1/3 1
2 1/3 1/2
1 1/3 1/2



 .

In this case, the characteristic polynomial of A is given by

f(λ) = det(A− λI) = −λ3 +
4

3
λ2 +

5

4
λ+

1

6
.

Clearing denominators gives 12f(λ) = −12λ3 + 16λ2 + 15λ+ 2, so
the only possible rational roots have the form p/q, where p divides 2
and q divides 12. Noting that λ = 2 is a root, one finds that

f(λ) = −(λ− 2)(λ2 + 2λ/3 + 1/12)

= −(λ− 2)(λ+ 1/6)(λ+ 1/2).

Thus, the eigenvalues of A are λ = 2, λ = −1/6 and λ = −1/2.
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Null space of a matrix

Definition 1.8 – Null space

The null space of an m × n matrix A is the set of all vectors v ∈ R
n

such that Av = 0. This is easily seen to be a subspace of Rn.

The null space of A is usually denoted by N (A) and its dimension is
called the nullity of A. The nullity of A is given by the number of free
variables in the reduced row echelon form of A.

Suppose A is a square matrix and λ is an eigenvalue of A. Then the
corresponding eigenvectors v are nonzero vectors such that

Av = λv ⇐⇒ (A− λI)v = 0.

In particular, eigenvectors of A with eigenvalue λ are merely nonzero
elements of N (A− λI). If the matrix A has several eigenvalues λ,
then one needs to determine N (A− λI) for each λ separately.

There is a standard method for finding the null space of a matrix.
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Finding the null space, page 1

The null space of a matrix A is equal to the null space of its reduced
row echelon form R. Let us determine the latter in the case that

R =

[

1 0 −2 3
0 1 −4 1

]

.

To find the null space of R, one needs to solve the system Rx = 0.
Note that the equations of this system can be written as

x1 − 2x3 + 3x4 = 0, x2 − 4x3 + x4 = 0.

Once we now eliminate the leading variables, we conclude that

x =









x1
x2
x3
x4









=









2x3 − 3x4
4x3 − x4

x3
x4









.

This equation expresses the vectors x of the null space of R in terms
of the two free variables, so the null space of R is two-dimensional.
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Finding the null space, page 2

Next, we find an explicit basis for the null space of R. As we have
already seen, every vector in the null space has the form

x =









2x3 − 3x4
4x3 − x4

x3
x4









= x3









2
4
1
0









+ x4









−3
−1
0
1









= x3v + x4w

for some particular vectors v,w. Since the variables x3, x4 are both
free, this means that the null space of R is the span of v,w.

To check that v,w are linearly independent, suppose x3v + x4w = 0
for some scalars x3, x4. Then we must have x = 0 by above. Looking
at the last two entries of x, we find that x3 = x4 = 0, as needed.

To find the null space of an arbitrary matrix A, one may proceed in a
similar manner. Let R be the reduced row echelon form, write down
the equations for the system Rx = 0 and then eliminate the leading
variables. As above, this will give rise to a basis for N (R) = N (A).
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Example: A non-diagonalisable 3× 3 matrix

We show that the matrix A is not diagonalisable in the case that

A =





1 0 1
2 3 1
1 1 2



 .

As we have already seen, the characteristic polynomial of A is

f(λ) = −λ3 + 6λ2 − 9λ+ 4 = −(λ− 1)2(λ− 4).

In particular, the only eigenvectors of A are nonzero elements of

N (A− I) = Span











−1
1
0











, N (A− 4I) = Span











1
5
3











.

Since we only found two eigenvectors, A is not diagonalisable.
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Example: Complex eigenvalues

The eigenvalues of a real matrix are not necessarily real and the same
is true for the eigenvectors. For instance, consider the matrix

A =

[

1 −1
1 1

]

.

The characteristic polynomial of this matrix is given by

f(λ) = λ2 − (trA)λ+ detA = λ2 − 2λ+ 2,

so the eigenvalues are λ = 1± i. As for the eigenvectors, we have

A− λI =

[

∓i −1
1 ∓i

]

−→

[

1 ∓i
0 0

]

and the corresponding eigenvectors are nonzero elements of

N (A− λI) =

{[

±iy
y

]

: y ∈ R

}

= Span

{[

±i
1

]}

.

We shall not deal with complex eigenvalues/eigenvectors very much.
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Distinct eigenvalues

Theorem 1.9 – Distinct eigenvalues

Suppose v1,v2, . . . ,vk are eigenvectors of an n × n matrix A which
correspond to distinct eigenvalues λ1, λ2, . . . , λk. Then v1,v2, . . . ,vk
are linearly independent. In particular, every n × n matrix that has n
distinct eigenvalues must be diagonalisable.

For instance, consider the upper triangular matrices

A =

[

1 2
0 3

]

, B =

[

1 2
0 1

]

, C =

[

1 0
0 1

]

.

Since the matrix A has two distinct eigenvalues, it is diagonalisable.
The other two matrices have λ = 1 as their only eigenvalue, while

N (B − I) = Span

{[

1
0

]}

, N (C − I) = Span

{[

1
0

]

,

[

0
1

]}

.

This shows that C is a diagonalisable matrix, whereas B is not.
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Example: Powers of a 2× 2 matrix, page 1

We compute the powers An of the matrix A in the case that

A =

[

2 3
1 4

]

.

The eigenvalues of A are the roots of the characteristic polynomial

f(λ) = λ2 − (trA)λ+ detA = λ2 − 6λ+ 5 = (λ− 1)(λ− 5).

This gives λ = 1, 5 and one may easily check that

N (A− I) = Span

{[

−3
1

]}

, N (A− 5I) = Span

{[

1
1

]}

.

According to the general theory, we must then have

B =

[

−3 1
1 1

]

=⇒ D = B−1AB =

[

1
5

]

=⇒ Dn = B−1AnB =

[

1
5n

]

.
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Example: Powers of a 2× 2 matrix, page 2

Solving the last equation for An, we now find that

An = BDnB−1 =

[

−3 1
1 1

] [

1
5n

] [

−3 1
1 1

]

−1

=

[

−3 5n

1 5n

] [

−3 1
1 1

]

−1

.

Since the inverse of B is given by the formula
[

−3 1
1 1

]

−1

= −
1

4

[

1 −1
−1 −3

]

=
1

4

[

−1 1
1 3

]

,

we may combine the last two equations to conclude that

An =
1

4

[

−3 5n

1 5n

] [

−1 1
1 3

]

=
1

4

[

5n + 3 3 · 5n − 3
5n − 1 3 · 5n + 1

]

.
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