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Recursive relations involving two terms

@ A recursive relation expresses each term of a sequence z1,z3,... as a
function of the previous terms. One generally prefers to have a closed
formula, namely one that expresses x,, as a function of n alone.

@ For instance, suppose that the sequences x.,, ¥, are such that

{ Tp = 2Tp_1 +4Yn—1 }
Yn = 5Tp_1 + 3Yn—1 )

@ Letting u, denote the vector of unknowns, one can then write

o]~ el JE
Yn 5 3| |Un-1

for some 2 x 2 matrix A. This equation is easily seen to imply that
wy = Auyq = A%upy_o = ... = A"uy.

@ Thus, one needs to compute A™ in order to obtain a closed formula.
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Recursive relations involving three or more terms

@ A recursive relation may involve several consecutive terms such as

Tn43 = Tpi2 + 5Tpi1 + 3Ty,

This relation can be handled exactly as before, although one needs to
keep track of three terms in order to determine the next one.

@ Letting u, consist of three consecutive terms, we can now write

Tpal 010
Uy = |Tpy2 = u,= (0 0 1| |zpt1| = Aup—
Tpis 3 51

for some 3 x 3 matrix A. This equation is easily seen to imply that
wy, = Au,q = A%upy_o = ... = Auy.

@ Once we are able to compute powers of the matrix A, we can then
obtain a closed formula for u,, and also one for the sequence z,,.
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Powers of diagonalisable matrices

(Definition 1.1 — Diagonalisable matrix w
LA square matrix A is called diagonalisable, if there exists an invertibIeJ

matrix B such that D = B~1AB is diagonal.

@ To compute powers of a diagonal matrix D, one notes that
A1 AT

p—| ™ ) . opro | M

Ak Ay

@ To compute powers of a diagonalisable matrix A, one notes that
D=B'AB = D"=B'A"B
— A"=BD"B™'.

This is an explicit formula that relates powers of A to powers of D.
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Eigenvalues and eigenvectors

\

/Theorem 1.2 — Diagonalisation

Let A be an n x n matrix. Then B~'AB is diagonal with diagonal
entries A1, Ao, ..., Ay if and only if the columns vy, vs, ..., v, of B are
linearly independent vectors such that Av; = \;v; for each 1.

%
~

(" Definition 1.3 — Eigenvalues and eigenvectors

Suppose A is a square matrix. A vector v is called an eigenvector of A
\With eigenvalue ), if v is nonzero with Av = A\wv.

%

@ The ith column of a matrix A is given by Ae;, where e; is the vector
whose ith entry is equal to 1 and all other entries are equal to 0.

@ According to the theorem, an n x n matrix is diagonalisable if and
only if it has n linearly independent eigenvectors.

@ We shall first focus on finding the eigenvalues A. Once we know the
eigenvalues, we may then find the eigenvectors by solving Av = \v.
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Finding the eigenvalues of a matrix

~

4 Definition 1.4 — Characteristic polynomial

The characteristic polynomial of a square matrix A is defined by
f(A) =det(A — \I).

\The roots of this polynomial are the eigenvalues of the matrix A.

(" Theorem 1.5 — Eigenvalues of simple matrices

@ The eigenvalues of a 2 x 2 matrix A are the roots of
FO) = A2 — (tr A)A + det A,

where tr A is the trace of A, the sum of its diagonal entries.

@ If A is either a lower triangular or an upper triangular matrix,
then the eigenvalues of A are the diagonal entries of A.

-
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Example: A diagonalisable 2 x 2 matrix, page 1

@ We show that the matrix A is diagonalisable in the case that
2 1
A= { 2 5] |
@ We need to check that A has two linearly independent eigenvectors.

The eigenvalues of A are the roots of the characteristic polynomial

FO) =X —(trA)A+det A=)\ —7T\+6

=A=1)(A—06).
@ When )\ = 1, eigenvectors satisfy the system Av = v, so we get
(1 1] [z 0
A-Thv=0 = 4 4] [y} = [O] = z+y=0.

That is, every eigenvector with eigenvalue A = 1 has the form

[ e
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Example: A diagonalisable 2 x 2 matrix, page 2

@ When A\ = 6, eigenvectors satisfy the system Av = 6v, so we get

(A-6Nv=0 = [_i _ﬂ m:[g] — dz—y=0.

That is, every eigenvector with eigenvalue A = 6 has the form

[ -

@ Since A has two distinct eigenvectors, we may now easily check that

-1 1 s 1
o[ = mus-[ ]

@ This is a typical application of the general theory. If the columns of B
are eigenvectors with eigenvalues \;, Ao, then B~1AB is a diagonal
matrix whose diagonal entries are Ay, Ao.
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Example: A non-diagonalisable 2 x 2 matrix

@ We show that the matrix A is not diagonalisable in the case that

3 4
]
@ The eigenvalues of A are the roots of the characteristic polynomial
) =2 —(trA)A+det A=)\ —2X+1=(\—1)%

so the only eigenvalue is A = 1. The eigenvectors satisfy Av = v and

(A-Iw=0 = [_? _;1] m:[g] —  2+2y=0.

@ In other words, every eigenvector of A must have the form

[

Since we only found one eigenvector, A is not diagonalisable.
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Solving polynomial equations

\

/Theorem 1.6 — Rational root test

Consider a polynomial f(x) with integer coefficients, say
f(z) =apz™ + ...+ a1z + ap.

Every rational root of f(x) has the form p/q, where p, q are relatively
9 prime integers such that p divides ag and ¢ divides a,,.

/
\

/Theorem 1.7 — Factor theorem

If a polynomial f(z) has x = « as a root, then it also has z — « as a
\factor, namely f(z) = (z — a) - g(z) for some polynomial g(x).

/

@ For instance, let f(x) = 2% — 32 — 2. The only possible rational roots
are x = +1 and « = £2. Noting that x = —1 is a root, we get

f@)= @+ 1)@ -2~ 2) = (e + 12+ Dz - 2).
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Example: An integer 3 X 3 matrix

@ As a typical example, we compute the eigenvalues of the matrix
1 01
A=1(2 3 1
11 2

@ In this case, the characteristic polynomial of A is given by

1-Xx 0 1
fA)=det| 2 3-X 1 | =-2N4+6\2-9x+4
1 12—

@ The only possible rational roots are A = +1, 2, +£4. Going through
this list, one easily finds that A = 1 is a root and that

FO)==A=1)(A2=5X+4)=—-A=1)(A=1)(\—4).

@ Thus, A =1 is a double eigenvalue and A\ = 4 is a simple eigenvalue.
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Example: A rational 3 x 3 matrix

@ We apply the same method to find the eigenvalues of the matrix

1/2 1/3 1
A=12 1/3 1/2
1 1/3 1/2
@ In this case, the characteristic polynomial of A is given by
4 1
FO) = det(A = AT) = =N 4+ 202+ Ta 4 o

@ Clearing denominators gives 12f(\) = —12)3 4+ 16A% + 15\ + 2, so
the only possible rational roots have the form p/q, where p divides 2
and g divides 12. Noting that A = 2 is a root, one finds that

FO) =—(A=2)(\* +2)/3+1/12)
=—(A=2)(A+1/6)(A+1/2).

@ Thus, the eigenvalues of A are A\ =2, A =—1/6 and A = —1/2.
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Null space of a matrix

(Definition 1.8 — Null space w
LThe null space of an m x n matrix A is the set of all vectors v € R”J

such that Av = 0. This is easily seen to be a subspace of R™.

@ The null space of A is usually denoted by AV/(A) and its dimension is
called the nullity of A. The nullity of A is given by the number of free
variables in the reduced row echelon form of A.

@ Suppose A is a square matrix and A is an eigenvalue of A. Then the
corresponding eigenvectors v are nonzero vectors such that

Av=Xw <<= (A-A)v=0.

@ In particular, eigenvectors of A with eigenvalue A\ are merely nonzero
elements of N (A — AI). If the matrix A has several eigenvalues \,
then one needs to determine N (A — \I) for each \ separately.

@ There is a standard method for finding the null space of a matrix.
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Finding the null space, page 1

@ The null space of a matrix A is equal to the null space of its reduced
row echelon form R. Let us determine the latter in the case that

10 -2 3
R_[o 1 —4 1]'

@ To find the null space of R, one needs to solve the system Rx = 0.
Note that the equations of this system can be written as

r1 — 223+ 3x4 =0, To —4xs + x4 = 0.

@ Once we now eliminate the leading variables, we conclude that

I 2.’1}3 - 3.’1}4

T 4y —x
T = 2 _ 3 4

€3 €T3

T4 T4

@ This equation expresses the vectors x of the null space of R in terms
of the two free variables, so the null space of R is two-dimensional.
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Finding the null space, page 2

@ Next, we find an explicit basis for the null space of R. As we have
already seen, every vector in the null space has the form

2x3 — 314 2 -3
4%3 — X4 4 -1
T = = I3 + x4 = r3v + r4W
T3 1 0
T4 0 1

for some particular vectors v, w. Since the variables z3, x4 are both
free, this means that the null space of R is the span of v, w.

@ To check that v, w are linearly independent, suppose x3v + z4w = 0
for some scalars x3, 4. Then we must have & = 0 by above. Looking
at the last two entries of x, we find that 3 = x4 = 0, as needed.

@ To find the null space of an arbitrary matrix A, one may proceed in a
similar manner. Let R be the reduced row echelon form, write down
the equations for the system Rz = 0 and then eliminate the leading
variables. As above, this will give rise to a basis for N'(R) = N(A).
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Example: A non-diagonalisable 3 x 3 matrix

@ We show that the matrix A is not diagonalisable in the case that
1 01
A=12 3 1
11 2
@ As we have already seen, the characteristic polynomial of A is

FO) = =N 4607 -9 +4=—(\—1)*(\—4).

@ In particular, the only eigenvectors of A are nonzero elements of

-1 1
N(A —1TI) = Span 1l p, N(A—4I)=Span{ |5
0 3

@ Since we only found two eigenvectors, A is not diagonalisable.
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Example: Complex eigenvalues

@ The eigenvalues of a real matrix are not necessarily real and the same
is true for the eigenvectors. For instance, consider the matrix

A=l -

@ The characteristic polynomial of this matrix is given by

FO) =X — (trA)A+det A = \2 — 2\ 4 2,

so the eigenvalues are A\ = 1 + 4. As for the eigenvectors, we have
T -1 1 T
A A= L :m} - [O 0}

and the corresponding eigenvectors are nonzero elements of

via- ([ ven) s [}

@ We shall not deal with complex eigenvalues/eigenvectors very much.
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Distinct eigenvalues

( Theorem 1.9 — Distinct eigenvalues w
Suppose v1,vs,...,V; are eigenvectors of an n X n matrix A which
correspond to distinct eigenvalues A1, Aa, ..., Ag. Then v1,v9,..., v

are linearly independent. In particular, every n x n matrix that has n
distinct eigenvalues must be diagonalisable.

@ For instance, consider the upper triangular matrices

ol ol e-py

@ Since the matrix A has two distinct eigenvalues, it is diagonalisable.
The other two matrices have A = 1 as their only eigenvalue, while

v} s1c-0-sma{[] [}

@ This shows that C' is a diagonalisable matrix, whereas B is not.
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Example: Powers of a 2 x 2 matrix, page 1

@ We compute the powers A™ of the matrix A in the case that
2 3
.
@ The eigenvalues of A are the roots of the characteristic polynomial

FO) =2 —(trAA+det A=X2—6A+5=(\—1)(\—5).

@ This gives A = 1,5 and one may easily check that

N(A— I) = Span { [_ﬂ } . N(A—5I) = Span { m } .

@ According to the general theory, we must then have

[-3 1 |
B_[l 1] — D=8 AB_[ 5]

— D'"=B'A"B= [1 5n] :
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Example: Powers of a 2 x 2 matrix, page 2

@ Solving the last equation for A™, we now find that

~1
-3 1|1 -3 1
n __ nnp—1 _
wmsorst= 1w 7]
(-3 5] [-3 117"
N 1 5" 11 '
@ Since the inverse of B is given by the formula
3 17" 11 1] 1[-11
1 1]~ 4|-1 =3] 4 1 3]’
we may combine the last two equations to conclude that
n_ 1 |=3 5" |-1 1
A _Z[ 1 5nH 1 3]

1 [5"+3 3-5n—3]

T 45" -1 3.5 +1
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