1. Find the eigenvalues and the eigenvectors of the matrix

$$A = \begin{bmatrix} 5 & 2\\ 4 & 3 \end{bmatrix}.$$

2. Is the following matrix diagonalisable? Why or why not?

$$A = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}.$$

3. Find a matrix A that has v_1 as an eigenvector with eigenvalue $\lambda_1 = 2$ and v_2 as an eigenvector with eigenvalue $\lambda_2 = 5$ when

$$\boldsymbol{v}_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \qquad \boldsymbol{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

4. Two square matrices A, C are said to be similar, if $C = B^{-1}AB$ for some invertible matrix B. Show that similar matrices have the same characteristic polynomial and also the same eigenvalues. Hint: one has $C - \lambda I = B^{-1}(A - \lambda I)B$.

1. Find a basis for both the null space and the column space of the matrix

$$A = \begin{bmatrix} 1 & 1 & 3 & 4 \\ 2 & 0 & 2 & 6 \\ 1 & 1 & 3 & 4 \end{bmatrix}.$$

2. Find the eigenvalues and the generalised eigenvectors of the matrix

$$A = \begin{bmatrix} 4 & -6 & 3\\ 0 & -1 & 4\\ 1 & -2 & 2 \end{bmatrix}.$$

3. Find a relation between x, y, z such that the following matrix is diagonalisable.

$$A = \begin{bmatrix} 1 & x & y \\ 0 & 2 & z \\ 0 & 0 & 1 \end{bmatrix}.$$

4. Suppose that λ is an eigenvalue of a square matrix A and let j be a positive integer. Show that the null space of $(A - \lambda I)^j$ is an A-invariant subspace of \mathbb{C}^n .

1. Find the Jordan form and a Jordan basis for the matrix

$$A = \begin{bmatrix} -1 & 1 & 2 \\ -7 & 5 & 3 \\ -5 & 1 & 6 \end{bmatrix}.$$

- **2.** Suppose that A is a 4×4 matrix whose column space is equal to its null space. Show that A^2 must be the zero matrix and find the Jordan form of A.
- **3.** Suppose that A is a 4×4 matrix whose only eigenvalue is $\lambda = 1$. Suppose also that the column space of A I is one-dimensional. Find the Jordan form of A.
- 4. Suppose that v_1, v_2, \ldots, v_k form a basis for the null space of a square matrix A and that $C = B^{-1}AB$ for some invertible matrix B. Find a basis for the null space of C.

1. The following matrix has $\lambda = 1$ as a triple eigenvalue. Use this fact to find its Jordan form, its minimal polynomial and also its inverse.

$$A = \begin{bmatrix} -1 & 4 & -4 \\ -2 & 5 & -4 \\ -1 & 2 & -1 \end{bmatrix}.$$

- 2. Suppose that A is a 5 × 5 matrix whose minimal polynomial is $m(\lambda) = \lambda^2(\lambda 1)$ and whose null space is 3-dimensional. Find the Jordan form of A.
- **3.** Let P_1 be the space of all real polynomials of degree at most 1 and define

$$\langle f,g\rangle = \int_0^1 (x+1)f(x)g(x)\,dx$$
 for all $f,g\in P_1$.

Find the matrix A of this bilinear form with respect to the standard basis.

4. Define a bilinear form on \mathbb{R}^2 by setting

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = 4x_1y_1 + 2x_1y_2 + 2x_2y_1 + 7x_2y_2$$

Find the matrix A of this form with respect to the standard basis and then find the matrix with respect to a basis consisting of eigenvectors of A.

1. Find an orthogonal matrix B such that B^tAB is diagonal when

$$A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}.$$

- **2.** A real matrix A is called skew-symmetric, if $A^t = -A$. Show that the eigenvalues of such a matrix are purely imaginary, namely of the form $\lambda = iy$ with $y \in \mathbb{R}$.
- **3.** Suppose that v_1, v_2, \ldots, v_n form an orthonormal basis of \mathbb{R}^n and consider the $n \times n$ matrix $A = I_n 2v_1v_1^t$. Show that $A^2 = I_n$ and find the Jordan form of A.
- 4. Find a 2 × 2 symmetric matrix A with eigenvalues $\lambda = 1, 2$ such that $v_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ is an eigenvector of A with eigenvalue $\lambda_1 = 1$.
- 5. Find an orthonormal basis of \mathbb{R}^3 that consists entirely of eigenvectors of

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}.$$

1. Find the values of a for which the matrix A is positive definite when

$$A = \begin{bmatrix} a & 1 & a \\ 1 & a & 1 \\ a & 1 & 2 \end{bmatrix}.$$

- 2. Prove the converse of the spectral theorem: if A is a real matrix such that B^tAB is diagonal for some orthogonal matrix B, then A must actually be symmetric.
- **3.** Find all $n \times n$ real symmetric matrices A such that $A^3 = I_n$.
- 4. Show that $A = I_n + \boldsymbol{v} \boldsymbol{v}^t$ is positive definite symmetric for each vector $\boldsymbol{v} \in \mathbb{R}^n$.
- 5. Find the values of a for which Q(x, y, z) is positive definite when

$$Q(x, y, z) = x^{2} + (a + 2)y^{2} + az^{2} + 2axy + 2axz + 2yz.$$

6. Suppose that A is a real positive definite symmetric matrix. Show that there exists a real positive definite symmetric matrix Q such that $Q^2 = A$.