
Linear algebra II

Homework #1 solutions

1. Find the eigenvalues and the eigenvectors of the matrix

A =

[

3 2
−1 6

]

.

Since trA = 9 and detA = 18 + 2 = 20, the characteristic polynomial is

f(λ) = λ2 − (trA)λ+ detA = λ2 − 9λ+ 20 = (λ− 4)(λ− 5).

The eigenvectors with eigenvalue λ = 4 satisfy the system Av = 4v, namely

(A− 4I)v = 0 =⇒

[

−1 2
−1 2

] [

x

y

]

=

[

0
0

]

=⇒ −x+ 2y = 0 =⇒ x = 2y.

This means that every eigenvector with eigenvalue λ = 4 must have the form

v =

[

2y
y

]

= y

[

2
1

]

, y 6= 0.

Similarly, the eigenvectors with eigenvalue λ = 5 are solutions of Av = 5v, so

(A− 5I)v = 0 =⇒

[

−2 2
−1 1

] [

x

y

]

=

[

0
0

]

=⇒ −x+ y = 0 =⇒ x = y

and every eigenvector with eigenvalue λ = 5 must have the form

v =

[

y

y

]

= y

[

1
1

]

, y 6= 0.

2. Find the eigenvalues and the eigenvectors of the matrix

A =





3 2 −2
2 3 −2
2 2 −1



 .

The eigenvalues of A are the roots of the characteristic polynomial

f(λ) = det(A− λI) = −λ3 + 5λ2 − 7λ+ 3 = −(λ− 1)2(λ− 3).

The eigenvectors of A are nonzero vectors in the null spaces

N (A− I) = Span











−1
1
0



 ,





1
0
1











, N (A− 3I) = Span











1
1
1











.



3. The following matrix has eigenvalues λ = 1, 1, 2, 2. Is it diagonalisable? Explain.

A =









1 1 −1 1
0 2 −1 1

−1 1 0 2
−2 2 −1 3









.

When it comes to the eigenvalue λ = 1, row reduction of A− λI gives

A− λI =









0 1 −1 1
0 1 −1 1

−1 1 −1 2
−2 2 −1 2









−→









0 1 −1 1
0 0 0 0
1 −1 1 −2
0 0 1 −2









−→









1 0 0 −1
0 1 0 −1
0 0 1 −2
0 0 0 0









,

so there are 3 pivots and only 1 linearly independent eigenvector. When λ = 2, we have

A− λI =









−1 1 −1 1
0 0 −1 1

−1 1 −2 2
−2 2 −1 1









−→









−1 1 0 0
0 0 −1 1

−1 1 0 0
−2 2 0 0









−→









1 −1 0 0
0 0 1 −1
0 0 0 0
0 0 0 0









,

so we get 2 pivots and 2 linearly independent eigenvectors. This gives a total of 3 linearly
independent eigenvectors, so A is not diagonalisable. One does not really need to find the
eigenvectors in this case, but those are nonzero elements of the null spaces

N (A− I) = Span























1
1
2
1























, N (A− 2I) = Span























1
1
0
0









,









0
0
1
1























.

4. Suppose A is a diagonalisable matrix and let k ≥ 1 be an integer. Show that each
eigenvector of A is an eigenvector of Ak and conclude that Ak is diagonalisable.

If v is an eigenvector of A with eigenvalue λ, then v satisfies Av = λv, so

A2
v = A(Av) = A(λv) = λ(Av) = λ(λv) = λ2

v.

It easily follows by induction that Ak
v = λk

v for each k. In particular, v is an eigenvector
of Ak as well. Suppose that A is n × n. Being diagonalisable, it must then have n linearly
independent eigenvectors. Those are also eigenvectors of Ak, so this matrix has n linearly
independent eigenvectors and it is diagonalisable as well.



Linear algebra II

Homework #2 solutions

1. Let x0 = 3 and y0 = 1. Suppose the sequences xn, yn are such that

xn = 3xn−1 − 2yn−1, yn = 4xn−1 + 9yn−1

for each n ≥ 1. Determine each of xn and yn explicitly in terms of n.

Letting un =

[

xn

yn

]

and A =

[

3 −2
4 9

]

, one easily finds that

un = Aun−1 = A2
un−2 = . . . = An

u0.

In particular, it remains to compute An. The eigenvalues of A are given by

λ2 − (trA)λ + detA = 0 =⇒ λ2 − 12λ+ 35 = 0 =⇒ λ = 5, 7

and we may proceed as usual to obtain the corresponding eigenvectors

v1 =

[

1
−1

]

, v2 =

[

1
−2

]

.

Let B be the matrix whose columns are v1 and v2. Then B−1AB is diagonal and

B−1AB =

[

5 0
0 7

]

=⇒ B−1AnB =

[

5n 0
0 7n

]

.

Solving this equation for An and simplifying, we now get

An =

[

1 1
−1 −2

] [

5n 0
0 7n

] [

2 1
−1 −1

]

=

[

2 · 5n − 7n 5n − 7n

2 · 7n − 2 · 5n 2 · 7n − 5n

]

.

In particular, the sequences xn, yn are given explicitly by
[

xn

yn

]

= un = An
u0 =

[

7 · 5n − 4 · 7n

8 · 7n − 7 · 5n

]

.

2. Show that the following matrix is diagonalisable.

A =





7 1 −7
3 3 −5
3 1 −3



 .

The eigenvalues of A are the roots of the characteristic polynomial

f(λ) = det(A− λI) = −λ3 + 7λ2 − 14λ+ 8 = −(λ− 1)(λ− 2)(λ− 4).

Since the eigenvalues of A are distinct, we conclude that A is diagonalisable.



3. Find the eigenvalues and the generalised eigenvectors of the matrix

A =





2 1 0
1 3 −1
0 1 2



 .

The eigenvalues of A are the roots of the characteristic polynomial

f(λ) = det(A− λI) = −λ3 + 7λ2 − 16λ+ 12 = (3− λ)(λ− 2)2.

When it comes to the eigenvalue λ = 3, one can easily check that

N (A− 3I) = Span











1
1
1











, N (A− 3I)2 = N (A− 3I).

This implies that N (A − 3I)j = N (A − 3I) for all j ≥ 1, so we have found all generalised
eigenvectors with λ = 3. When it comes to the eigenvalue λ = 2, one similarly has

N (A− 2I) = Span











1
0
1











, N (A− 2I)2 = N (A− 2I)3 = Span











−1
1
0



 ,





1
0
1











.

In view of the general theory, we must thus have N (A− 2I)j = N (A− 2I)2 for all j ≥ 2.

4. Suppose that A is a 4 × 4 matrix whose first two columns are linearly independent,
its third column is equal to the first column and its last column is zero. Find a basis for
both the column space and the null space of A. Hint: one has Ae3 = Ae1 and Ae4 = 0.

By assumption, the first two columns are linearly independent, while the other two
columns are linear combinations of the first two. This implies that Ae1, Ae2 form a basis
for the column space. Since the column space is two-dimensional, the null space must be
two-dimensional as well. On the other hand, the given assumptions ensure that

A(e3 − e1) = Ae3 − Ae1 = 0, Ae4 = 0.

It easily follows that the vectors e3 − e1 and e4 form a basis for the null space, namely

N (A) = Span























−1
0
1
0









,









0
0
0
1























.



Linear algebra II

Homework #3 solutions

1. The following matrix has λ = 2 as its only eigenvalue. What is its Jordan form?

A =





4 −1 −1
2 1 −1
2 −1 1



 .

In this case, the null space of A− 2I is two-dimensional, as row reduction gives

A− 2I =





2 −1 −1
2 −1 −1
2 −1 −1



 −→





1 −1/2 −1/2
0 0 0
0 0 0



 .

On the other hand, (A−2I)2 is the zero matrix, so its null space is three-dimensional. Thus,
the diagram of Jordan chains is • •

•
and there is a Jordan chain of length 2 as well as a

Jordan chain of length 1. These Jordan chains give a 2× 2 block and an 1× 1 block, so

J =





2
1 2

2



 .

2. The following matrix has λ = 2 as its only eigenvalue. What is its Jordan form?

A =





3 2 −1
2 2 −1

−1 6 1



 .

In this case, the null space of A− 2I is one-dimensional, as row reduction gives

A− 2I =





1 2 −1
2 0 −1

−1 6 −1



 −→





1 2 −1
0 −4 1
0 8 −2



 −→





1 0 −1/2
0 1 −1/4
0 0 0



 .

Similarly, the null space of (A− 2I)2 is two-dimensional because

(A− 2I)2 =





6 −4 −2
3 −2 −1
12 −8 −4



 −→





1 −2/3 −1/3
0 0 0
0 0 0



 ,

while (A − 2I)3 is the zero matrix, so its null space is three-dimensional. The diagram of

Jordan chains is then
•

•

•

and there is a single 3× 3 Jordan block, namely

J =





λ

1 λ

1 λ



 =





2
1 2

1 2



 .



3. Find a Jordan chain of length 2 for the matrix

A =

[

1 4
−1 5

]

.

The eigenvalues of the given matrix are the roots of the characteristic polynomial

f(λ) = λ2 − (trA)λ + detA = λ2 − 6λ+ 9 = (λ− 3)2,

so λ = 3 is the only eigenvalue. Using row reduction, we now get

A− 3I =

[

−2 4
−1 2

]

−→

[

1 −2
0 0

]

,

so the null space of A − 3I is one-dimensional. On the other hand, (A − 3I)2 is the zero
matrix, so its null space is two-dimensional. To find a Jordan chain of length 2, we pick a
vector v1 that lies in the latter null space, but not in the former. We can always take

v1 = e1 =

[

1
0

]

=⇒ v2 = (A− 3I)v1 =

[

−2
−1

]

,

but there are obviously infinitely many choices. Another possible choice would be

v1 = e2 =

[

0
1

]

=⇒ v2 = (A− 3I)v1 =

[

4
2

]

.

4. Let x ∈ R
3 be nonzero and let A be the matrix whose columns are x, 2x, 3x in this

order. Show that x is an eigenvector of A and find a basis for the null space of A.

The columns of A are Ae1 = x, Ae2 = 2x and Ae3 = 3x. It easily follows that

Ax = A(x1e1 + x2e2 + x3e3) = x1x+ x2(2x) + x3(3x) = λx,

where λ = x1 + 2x2 + 3x3. This shows that x is an eigenvector of A. Since every column
of A is a scalar multiple of x, the column space is one-dimensional and the null space is
two-dimensional. Using the condition 2Ae1 = 2x = Ae2, one finds that 2e1 − e2 ∈ N (A).
Using the condition 3Ae1 = 3x = Ae3, we get 3e1 − e3 ∈ N (A) as well, hence

N (A) = Span











2
−1
0



 ,





3
0

−1











.



Linear algebra II

Homework #4 solutions

1. Find the Jordan form and a Jordan basis for the matrix

A =





3 4 −2
2 5 −2
4 8 −3



 .

The characteristic polynomial of the given matrix is

f(λ) = det(A− λI) = −λ3 + 5λ2 − 7λ+ 3 = (3− λ)(λ− 1)2,

so its eigenvalues are λ = 1, 1, 3. The corresponding null spaces are easily found to be

N (A− I) = Span











−2
1
0



 ,





1
0
1











, N (A− 3I) = Span











1
1
2











.

These contain 3 linearly independent eigenvectors, so A is diagonalisable and

B =





−2 1 1
1 0 1
0 1 2



 =⇒ J = B−1AB =





1
1

3



 .

2. Find the Jordan form and a Jordan basis for the matrix

A =





3 2 −1
1 4 −1
1 3 1



 .

The characteristic polynomial of the given matrix is

f(λ) = det(A− λI) = −λ3 + 8λ2 − 21λ+ 18 = (2− λ)(λ− 3)2,

so its eigenvalues are λ = 2, 3, 3. The corresponding null spaces are easily found to be

N (A− 2I) = Span











1
0
1











, N (A− 3I) = Span











1
1
2











.

This implies that A is not diagonalisable and that its Jordan form is

J = B−1AB =





2
3
1 3



 .



To find a Jordan basis, we need to find vectors v1, v2, v3 such that v1 is an eigenvector with
eigenvalue λ = 2 and v2, v3 is a Jordan chain with eigenvalue λ = 3. In our case, we have

N (A− 3I)2 = Span











1
1
0



 ,





0
0
1











,

so it easily follows that a Jordan basis is provided by the vectors

v1 =





1
0
1



 , v2 =





0
0
1



 , v3 = (A− 3I)v2 =





−1
−1
−2



 .

3. Suppose A is a 2 × 2 matrix such that A2 = I2 and let J be the Jordan form of A.
Show that J2 = I2 and use this fact to conclude that J is diagonal.

Write J = B−1AB for some invertible matrix B. Since A2 = I2, we must also have

J2 = B−1AB · B−1AB = B−1A2B = B−1I2B = I2.

Next, we show that J is diagonal. If that is not the case, then J is a 2× 2 block and

J =

[

λ

1 λ

]

=⇒ J2 =

[

λ

1 λ

] [

λ

1 λ

]

=

[

λ2

2λ λ2

]

.

Comparing the last two equations now gives λ2 = 1 and 2λ = 0, a contradiction.

4. Suppose A is a 4 × 4 matrix with characteristic polynomial f(λ) = λ3(λ − 1) and
suppose its column space is two-dimensional. Find the Jordan form of A.

When it comes to the triple eigenvalue λ = 0, the number of Jordan blocks is

dimN (A− λI) = dimN (A) = 4− dim C(A) = 2.

In particular, there is one 2× 2 block and one 1× 1 block, so the Jordan form is

J =









0
1 0

0
1









.



Linear algebra II

Homework #5 solutions

1. Let x0 = 1 and y0 = 2. Suppose the sequences xn, yn are such that

xn = 8xn−1 − 9yn−1, yn = xn−1 + 2yn−1

for each n ≥ 1. Determine each of xn and yn explicitly in terms of n.

As we already know, one may express this problem in terms of matrices by writing

un =

[

xn

yn

]

=

[

8 −9
1 2

] [

xn−1

yn−1

]

= Aun−1 =⇒ un = An
u0.

Let us now focus on computing An. The characteristic polynomial of A is

f(λ) = λ2 − (trA)λ+ detA = λ2 − 10λ+ 25 = (λ− 5)2,

so the only eigenvalue is λ = 5. The eigenvectors of A are nonzero elements of the null space

N (A− 5I) = Span

{[

3
1

]}

,

while (A− 5I)2 is the zero matrix. Thus, a Jordan basis is provided by the vectors

v1 =

[

1
0

]

, v2 = (A− 5I)v1 =

[

3
1

]

.

Letting B be the matrix whose columns are v1 and v2, we must thus have

J = B−1AB =

[

5
1 5

]

=⇒ Jn = B−1AnB =

[

5n

n5n−1 5n

]

.

Once we now solve this equation for An, we find that

An = BJnB−1 =

[

1 3
0 1

] [

5n

n5n−1 5n

] [

1 −3
0 1

]

=

[

(5 + 3n)5n−1 −9n5n−1

n5n−1 (5− 3n)5n−1

]

.

In particular, the sequences xn, yn are given explicitly by

[

xn

yn

]

= un = An
u0 =

[

(1− 3n)5n

(2− n)5n

]

.



2. Which of the following matrices are similar? Explain.

A =

[

2 1
1 2

]

, B =

[

1 −1
1 3

]

, C =

[

2 0
1 2

]

, D =

[

1 0
1 2

]

.

The eigenvalues of the first matrix are given by

λ2 − (trA)λ+ detA = 0 =⇒ λ2 − 4λ+ 3 = 0 =⇒ λ = 1, 3

and the eigenvalues of the second matrix are

λ2 − (trB)λ+ detB = 0 =⇒ λ2 − 4λ+ 4 = 0 =⇒ λ = 2, 2.

The other two matrices are lower triangular, so their eigenvalues are their diagonal entries.
This means that B,C are the only two matrices which could be similar. In fact,

N (B − 2I) = Span

{[

1
−1

]}

is one-dimensional, so the Jordan form of B has a single block and B is similar to C.

3. Show that the trace of a square matrix A is the sum of its eigenvalues. Hint: prove
the same statement for the Jordan form of A and then use similarity.

Let J denote the Jordan form of A. Since J is lower triangular, its eigenvalues are its
diagonal entries, so the sum of its eigenvalues is equal to its trace. On the other hand, A is
similar to J , so the two matrices have both the same trace and the same eigenvalues. This
means that the sum of the eigenvalues of A is equal to the trace of A.

4. Let x ∈ R
3 be nonzero and let A be the matrix whose columns are x, 2x, 3x in this

order. Find the Jordan form of A. Hint: the answer depends on the trace of A; show
that the null space is two-dimensional and that the eigenvalues are λ = 0, 0, trA.

Since the column space is one-dimensional, the null space must be two-dimensional. This
means that the Jordan form contains two blocks with eigenvalue λ = 0. As the sum of the
eigenvalues is equal to the trace, the third eigenvalue is thus λ = trA.

Let us now consider two cases. When trA 6= 0, the eigenvalue λ = trA is simple and it
contributes a single 1× 1 block. There are also two Jordan blocks with λ = 0, so all blocks
are 1× 1 blocks and the Jordan form is diagonal. When trA = 0, the eigenvalue λ = 0 is a
triple eigenvalue that only contributes two Jordan blocks, so the Jordan form is

J =





0
1 0

0



 .



Linear algebra II

Homework #6 solutions

1. The following matrix has λ = 1 as a triple eigenvalue. Use this fact to find its Jordan
form, its minimal polynomial and also its inverse.

A =





2 1 −1
1 2 −1
2 2 −1



 .

To find the Jordan form of A, we use row reduction on the matrix A− λI to get

A− λI = A− I =





1 1 −1
1 1 −1
2 2 −2



 −→





1 1 −1
0 0 0
0 0 0



 .

This gives one pivot and two free variables, so there are two Jordan blocks and

J =





1
1 1

1



 .

The minimal polynomial is m(λ) = (λ− 1)2. Since A satisfies this polynomial, one has

A2 − 2A+ I = 0 =⇒ I = A(2I −A) =⇒ A−1 = 2I − A =





0 −1 1
−1 0 1
−2 −2 3



 .

2. The following matrix has eigenvalues λ = 0, 1, 1. Use this fact to find its Jordan
form, its minimal polynomial and also its power A2018.

A =





2 1 −1
2 1 −1
3 1 −1



 .

The eigenvalue λ = 0 is simple, so it contributes an 1× 1 block. When λ = 1, we have

A− λI = A− I =





1 1 −1
2 0 −1
3 1 −2



 −→





1 0 −1/2
0 1 −1/2
0 0 0





and this gives a single 2× 2 block with eigenvalue λ = 1. The Jordan form is thus

J =





1
1 1

0







and the minimal polynomial is m(λ) = λ(λ− 1)2. Since A satisfies this polynomial,

A3 − 2A2 + A = 0 =⇒ A3 = 2A2 − A

=⇒ A4 = 2A3 − A2 = 2(2A2 −A)− A2 = 3A2 − 2A

=⇒ A5 = 3A3 − 2A2 = 3(2A2 − A)− 2A2 = 4A2 − 3A.

It follows by induction that An = (n− 1)A2 − (n− 2)A for each n ≥ 3 and this gives

A2018 = 2017





3 2 −2
3 2 −2
5 3 −3



− 2016





2 1 −1
2 1 −1
3 1 −1



 =





2019 2018 −2018
2019 2018 −2018
4037 4035 −4035



 .

3. Suppose that A is a 2× 2 matrix with detA = 0. Use the Cayley-Hamilton theorem
to show that A2 = (trA)A and determine An explicitly for each integer n ≥ 2.

According to the Cayley-Hamilton theorem, A satisfies its characteristic polynomial

f(λ) = λ2 − (trA)λ+ detA =⇒ A2 = (trA)A− (detA)I = (trA)A.

Using this formula to compute A3, one now finds that

A3 = A2 · A = (trA)A2 = (trA)2A.

It easily follows by induction that An = (trA)n−1A for each integer n ≥ 2.

4. Let P2 be the space of all real polynomials of degree at most 2 and let

〈f, g〉 =

∫

1

0

(1− x) · f(x)g(x) dx for all f, g ∈ P2.

Find the matrix of this bilinear form with respect to the standard basis.

The standard basis consists of the polynomials v1 = 1, v2 = x, v3 = x2 and this gives

〈vi, vj〉 = 〈xi−1, xj−1〉 =

∫

1

0

(1− x) · xi+j−2 dx =
1

i+ j − 1
−

1

i+ j

for all integers 1 ≤ i, j ≤ 3. Since the matrix of the form has entries aij = 〈vi, vj〉, we get

A =





1/2 1/6 1/12
1/6 1/12 1/20
1/12 1/20 1/30



 .



Linear algebra II

Homework #7 solutions

1. Consider R
3 with the usual dot product. Use the Gram-Schmidt procedure to find

an orthogonal basis, starting with the vectors

v1 =





1
2
3



 , v2 =





1
0
1



 , v3 =





1
1
1



 .

Keep the first vector and let w1 = v1. The second vector v2 must be replaced by

w2 = v2 −
〈v2,w1〉

〈w1,w1〉
w1 =





1
0
1



−
1 + 0 + 3

1 + 4 + 9





1
2
3



 =





5/7
−4/7
1/7





and then the third vector v3 must be replaced by

w3 = v3 −
〈v3,w1〉

〈w1,w1〉
w1 −

〈v3,w2〉

〈w2,w2〉
w2 =





1/3
1/3

−1/3



 .

2. Define a bilinear form on R
2 by setting

〈x,y〉 = x1y1 + x1y2 + x2y1 + 5x2y2.

Show that this is an inner product and use the Gram-Schmidt procedure to find an
orthogonal basis for it, starting with the standard basis of R2.

The given form is symmetric because its matrix with respect to the standard basis is

A =

[

1 1
1 5

]

.

To show that the form is positive definite, we complete the square to write

〈x,x〉 = x2

1
+ 2x1x2 + 5x2

2
= (x1 + x2)

2 + 4x2

2
.

Finally, one can obtain an orthogonal basis by taking w1 = e1 and

w2 = e2 −
〈e2,w1〉

〈w1,w1〉
w1 = e2 −

e
t
2
Ae1

e
t
1
Ae1

e1 = e2 −
a21

a11
e1 =

[

−1
1

]

.



3. Define a bilinear form on the space M22 of all 2× 2 real matrices by setting

〈A,B〉 = tr(AtB)

for all 2× 2 real matrices A,B. Express this equation in terms of the entries of the two
matrices. Is the bilinear form symmetric? Is it positive definite?

In terms of the entries of the two matrices, we have

AtB =

[

a11 a21
a12 a22

] [

b11 b12
b21 b22

]

=

[

a11b11 + a21b21 a11b12 + a21b22
a12b11 + a22b21 a12b12 + a22b22

]

,

so one may write the given equation as

〈A,B〉 = a11b11 + a21b21 + a12b12 + a22b22 =
∑

i,j

aijbij .

In particular, the given form is symmetric and we also have

〈A,A〉 = a2
11
+ a2

21
+ a2

12
+ a2

22
=

∑

i,j

a2ij ≥ 0.

Since equality holds if and only if A = 0, the given form is positive definite as well.

4. Find two eigenvectors of A which form an orthonormal basis of R2 when

A =

[

a b

b a

]

, a, b 6= 0.

First of all, we compute the eigenvalues of A. The characteristic polynomial is

f(λ) = λ2 − (trA)λ+ detA = λ2 − 2aλ+ a2 − b2 = (λ− a)2 − b2,

so it easily follows that the eigenvalues are

(λ− a)2 = b2 =⇒ λ− a = ±b =⇒ λ = a± b.

Next, we turn to the eigenvectors. When λ = a+ b, one may use row reduction to get

A− λI =

[

−b b

b −b

]

−→

[

1 −1
0 0

]

, N (A− λI) = Span

{[

1
1

]}

.

When λ = a− b, one may use a similar computation to find that

A− λI =

[

b b

b b

]

−→

[

1 1
0 0

]

, N (A− λI) = Span

{[

−1
1

]}

.

This gives two vectors which are orthogonal to one another, so an orthonormal basis is

v1 =
1
√
2

[

1
1

]

, v2 =
1
√
2

[

−1
1

]

.



Linear algebra II

Homework #8 solutions

1. Find an orthogonal matrix B such that BtAB is diagonal when

A =





3 1 2
1 4 1
2 1 3



 .

The eigenvalues of A are the roots of the characteristic polynomial

f(λ) = det(A− λI) = −λ3 + 10λ2 − 27λ+ 18 = −(λ− 1)(λ− 3)(λ− 6).

This gives λ1 = 1, λ2 = 3 and λ3 = 6, while the corresponding eigenvectors are

v1 =





−1
0
1



 , v2 =





1
−2
1



 , v3 =





1
1
1



 .

Since the eigenvalues are distinct, the eigenvectors are orthogonal to one another. Once we
now divide each of them by its length, we obtain the columns of the orthogonal matrix

B =





−1/
√
2 1/

√
6 1/

√
3

0 −2/
√
6 1/

√
3

1/
√
2 1/

√
6 1/

√
3



 .

2. Suppose that v1, v2, . . . , vn form an orthonormal basis of Rn and consider the n× n

matrix A = v2v
t

1
. Show that A2 = 0 and find the Jordan form of A.

Since v1 is perpendicular to v2 by assumption, one easily finds that

v
t

1
v2 = 0 =⇒ A2 = v2v

t

1
v2v

t

1
= 0.

In particular, λ = 0 is the only eigenvalue of A and we also have

Av1 = v2v
t

1
v1 = v2, Avk = v2v

t

1
vk = 0

for each integer k ≥ 2. Since Av1 = v2 and Av2 = 0, the first two vectors form a Jordan
chain of length 2. Thus, the Jordan form contains a 2× 2 block with eigenvalue λ = 0. The
remaining blocks correspond to the vectors v3, . . . , vn and they are all 1× 1 blocks.



3. Find an orthonormal basis of R3 that consists entirely of eigenvectors of

A =





1 2 3
2 4 6
3 6 9



 .

The eigenvalues of A are the roots of the characteristic polynomial

f(λ) = det(A− λI) = −λ3 + 14λ2 = λ2(14− λ),

namely λ1 = λ2 = 0 and λ3 = 14. The corresponding eigenvectors are easily found to be

v1 =





−2
1
0



 , v2 =





−3
0
1



 , v3 =





1
2
3



 .

Note that the first two vectors are not orthogonal to one another. To find an orthogonal
basis, we thus resort to the Gram-Schmidt procedure which gives the vectors

w1 = v1 =





−2
1
0



 , w2 = v2 −
〈v2,w1〉

〈w1,w1〉
w1 =





−3/5
−6/5

1



 , w3 = v3 =





1
2
3



 .

Once we now divide each of these vectors by its length, we get the orthonormal basis

u1 =
1
√
5





−2
1
0



 , u2 =
1

√
70





−3
−6
5



 , u3 =
1

√
14





1
2
3



 .

4. Find an orthogonal 3× 3 matrix whose first two columns are

v1 =





cosx · cos y
sin x

cosx · sin y



 , v2 =





− sin y
0

cos y



 , x, y ∈ R.

It is easy to check that v1, v2 are orthogonal vectors of unit length, namely

v
t

1
v2 = − cosx · cos y · sin y + cosx · cos y · sin y = 0,

||v1||
2 = cos2 x · cos2 y + cos2 x · sin2 y + sin2 x = cos2 x+ sin2 x = 1,

||v2||
2 = sin2 y + cos2 y = 1.

The third column is perpendicular to each of the first two columns, so it is parallel to

v3 = v1 × v2 =





cosx · cos y
sin x

cos x · sin y



×





− sin y
0

cos y



 =





sin x · cos y
− cosx

sin x · sin y



 .

This is actually a unit vector itself, so the third column could be either v3 or −v3.
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