Linear algebra II
Homework #1
due Thursday, Feb. 1

1. Find the eigenvalues and the eigenvectors of the matrix

\[A = \begin{bmatrix} 3 & 2 \\ -1 & 6 \end{bmatrix}. \]

2. Find the eigenvalues and the eigenvectors of the matrix

\[A = \begin{bmatrix} 3 & 2 & -2 \\ 2 & 3 & -2 \\ 2 & 2 & -1 \end{bmatrix}. \]

3. The following matrix has eigenvalues \(\lambda = 1, 1, 2, 2 \). Is it diagonalisable? Explain.

\[A = \begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & 2 & -1 & 1 \\ -1 & 1 & 0 & 2 \\ -2 & 2 & -1 & 3 \end{bmatrix}. \]

4. Suppose \(A \) is a diagonalisable matrix and let \(k \geq 1 \) be an integer. Show that each
eigenvector of \(A \) is an eigenvector of \(A^k \) and conclude that \(A^k \) is diagonalisable.

- This assignment is due by Thursday noon, either in class or else in my office.
- Write your name and course (Maths, TP, TSM) on the first page of your homework.
- NO LATE HOMEWORK WILL BE ACCEPTED.
Linear algebra II
Homework #2
due Thursday, Feb. 8

1. Let \(x_0 = 3 \) and \(y_0 = 1 \). Suppose the sequences \(x_n, y_n \) are such that

\[
x_n = 3x_{n-1} - 2y_{n-1}, \quad y_n = 4x_{n-1} + 9y_{n-1}
\]

for each \(n \geq 1 \). Determine each of \(x_n \) and \(y_n \) explicitly in terms of \(n \).

2. Show that the following matrix is diagonalisable.

\[
A = \begin{bmatrix}
7 & 1 & -7 \\
3 & 3 & -5 \\
3 & 1 & -3
\end{bmatrix}
\]

3. Find the eigenvalues and the generalised eigenvectors of the matrix

\[
A = \begin{bmatrix}
2 & 1 & 0 \\
1 & 3 & -1 \\
0 & 1 & 2
\end{bmatrix}
\]

4. Suppose that \(A \) is a \(4 \times 4 \) matrix whose first two columns are linearly independent, its third column is equal to the first column and its last column is zero. Find a basis for both the column space and the null space of \(A \). Hint: \(A e_3 = A e_1 \) and \(A e_4 = 0 \).

- This assignment is due by Thursday noon, either in class or else in my office.
- Write your name and course (Maths, TP, TSM) on the first page of your homework.
- NO LATE HOMEWORK WILL BE ACCEPTED.
1. The following matrix has $\lambda = 2$ as its only eigenvalue. What is its Jordan form?

$$A = \begin{bmatrix} 4 & -1 & -1 \\ 2 & 1 & -1 \\ 2 & -1 & 1 \end{bmatrix}.$$

2. The following matrix has $\lambda = 2$ as its only eigenvalue. What is its Jordan form?

$$A = \begin{bmatrix} 3 & 2 & -1 \\ 2 & 2 & -1 \\ -1 & 6 & 1 \end{bmatrix}.$$

3. Find a Jordan chain of length 2 for the matrix

$$A = \begin{bmatrix} 1 & 4 \\ -1 & 5 \end{bmatrix}.$$

4. Let $\mathbf{x} \in \mathbb{R}^3$ be nonzero and let A be the matrix whose columns are $\mathbf{x}, 2\mathbf{x}, 3\mathbf{x}$ in this order. Show that \mathbf{x} is an eigenvector of A and find a basis for the null space of A.

- This assignment is due by Thursday noon, either in class or else in my office.
- Write your name and course (Maths, TP, TSM) on the first page of your homework.
- NO LATE HOMEWORK WILL BE ACCEPTED.
Linear algebra II
Homework #4
due Thursday, Feb. 22

1. Find the Jordan form and a Jordan basis for the matrix
\[A = \begin{bmatrix} 3 & 4 & -2 \\ 2 & 5 & -2 \\ 4 & 8 & -3 \end{bmatrix}. \]

2. Find the Jordan form and a Jordan basis for the matrix
\[A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 4 & -1 \\ 1 & 3 & 1 \end{bmatrix}. \]

3. Suppose \(A \) is a \(2 \times 2 \) matrix such that \(A^2 = I_2 \) and let \(J \) be the Jordan form of \(A \). Show that \(J^2 = I_2 \) and use this fact to conclude that \(J \) is diagonal.

4. Suppose \(A \) is a \(4 \times 4 \) matrix with characteristic polynomial \(f(\lambda) = \lambda^3(\lambda - 1) \) and suppose its column space is two-dimensional. Find the Jordan form of \(A \).

- This assignment is due by Thursday noon, either in class or else in my office.
- Write your name and course (Maths, TP, TSM) on the first page of your homework.
- NO LATE HOMEWORK WILL BE ACCEPTED.
1. Let $x_0 = 1$ and $y_0 = 2$. Suppose the sequences x_n, y_n are such that

$$x_n = 8x_{n-1} - 9y_{n-1}, \quad y_n = x_{n-1} + 2y_{n-1}$$

for each $n \geq 1$. Determine each of x_n and y_n explicitly in terms of n.

2. Which of the following matrices are similar? Explain.

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}.$$

3. Show that the trace of a square matrix A is the sum of its eigenvalues. Hint: prove the same statement for the Jordan form of A and then use similarity.

4. Let $x \in \mathbb{R}^3$ be nonzero and let A be the matrix whose columns are $x, 2x, 3x$ in this order. Find the Jordan form of A. Hint: the answer depends on the trace of A; show that the null space is two-dimensional and that the eigenvalues are $\lambda = 0, 0, \text{tr } A$.

* This assignment is due by Thursday noon, either in class or else in my office.
* Write your name and course (Maths, TP, TSM) on the first page of your homework.
* NO LATE HOMEWORK WILL BE ACCEPTED.
1. The following matrix has $\lambda = 1$ as a triple eigenvalue. Use this fact to find its Jordan form, its minimal polynomial and also its inverse.

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ 2 & 2 & -1 \end{bmatrix}.$$

2. The following matrix has eigenvalues $\lambda = 0, 1, 1$. Use this fact to find its Jordan form, its minimal polynomial and also its power A^{2018}.

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 2 & 1 & -1 \\ 3 & 1 & -1 \end{bmatrix}.$$

3. Suppose that A is a 2×2 matrix with $\det A = 0$. Use the Cayley-Hamilton theorem to show that $A^2 = (\tr A)A$ and determine A^n explicitly for each integer $n \geq 2$.

4. Let P_2 be the space of all real polynomials of degree at most 2 and let

$$\langle f, g \rangle = \int_0^1 (1 - x) \cdot f(x)g(x) \, dx \quad \text{for all } f, g \in P_2.$$

Find the matrix of this bilinear form with respect to the standard basis.

- This assignment is due by Thursday noon, either in class or else in my office.
- Write your name and course (Maths, TP, TSM) on the first page of your homework.
- NO LATE HOMEWORK WILL BE ACCEPTED.
1. Consider \mathbb{R}^3 with the usual dot product. Use the Gram-Schmidt procedure to find an orthogonal basis, starting with the vectors

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

2. Define a bilinear form on \mathbb{R}^2 by setting

$$\langle x, y \rangle = x_1y_1 + x_1y_2 + x_2y_1 + 5x_2y_2.$$

Show that this is an inner product and use the Gram-Schmidt procedure to find an orthogonal basis for it, starting with the standard basis of \mathbb{R}^2.

3. Define a bilinear form on the space M_{22} of all 2×2 real matrices by setting

$$\langle A, B \rangle = \text{tr}(A^tB)$$

for all 2×2 real matrices A, B. Express this equation in terms of the entries of the two matrices. Is the bilinear form symmetric? Is it positive definite?

4. Find two eigenvectors of A which form an orthonormal basis of \mathbb{R}^2 when

$$A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}, \quad a, b \neq 0.$$

- This assignment is due by Thursday noon, either in class or else in my office.
- Write your name and course (Maths, TP, TSM) on the first page of your homework.
- NO LATE HOMEWORK WILL BE ACCEPTED.
1. Find an orthogonal matrix B such that $B^t A B$ is diagonal when

$$A = \begin{bmatrix} 3 & 1 & 2 \\ 1 & 4 & 1 \\ 2 & 1 & 3 \end{bmatrix}. $$

2. Suppose that v_1, v_2, \ldots, v_n form an orthonormal basis of \mathbb{R}^n and consider the $n \times n$ matrix $A = v_2 v_1^t$. Show that $A^2 = 0$ and find the Jordan form of A.

3. Find an orthonormal basis of \mathbb{R}^3 that consists entirely of eigenvectors of

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}. $$

4. Find an orthogonal 3×3 matrix whose first two columns are

$$v_1 = \begin{bmatrix} \cos x \cdot \cos y \\ \sin x \\ \cos x \cdot \sin y \end{bmatrix}, \quad v_2 = \begin{bmatrix} -\sin y \\ 0 \\ \cos y \end{bmatrix}, \quad x, y \in \mathbb{R}. $$

- This assignment is due by Thursday noon, either in class or else in my office.
- Write your name and course (Maths, TP, TSM) on the first page of your homework.
- NO LATE HOMEWORK WILL BE ACCEPTED.