1. Find the eigenvalues and the eigenvectors of the matrix

$$A = \begin{bmatrix} 5 & 2 \\ 4 & 3 \end{bmatrix}.$$

2. Is the following matrix diagonalisable? Why or why not?

$$A = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}.$$

3. Find a matrix A that has v_1 as an eigenvector with eigenvalue $\lambda_1 = 2$ and v_2 as an eigenvector with eigenvalue $\lambda_2 = 5$ when

$$oldsymbol{v}_1 = egin{bmatrix} 2 \ -1 \end{bmatrix}, \qquad oldsymbol{v}_2 = egin{bmatrix} 1 \ 1 \end{bmatrix}.$$

4. Two square matrices A, C are said to be similar, if $C = B^{-1}AB$ for some invertible matrix B. Show that similar matrices have the same characteristic polynomial and also the same eigenvalues. Hint: one has $C - \lambda I = B^{-1}(A - \lambda I)B$.

1. Find a basis for both the null space and the column space of the matrix

$$A = \begin{bmatrix} 1 & 1 & 3 & 4 \\ 2 & 0 & 2 & 6 \\ 1 & 1 & 3 & 4 \end{bmatrix}.$$

2. Find the eigenvalues and the generalised eigenvectors of the matrix

$$A = \begin{bmatrix} 4 & -6 & 3 \\ 0 & -1 & 4 \\ 1 & -2 & 2 \end{bmatrix}.$$

3. Show that \mathcal{W} is an A-invariant subspace of \mathbb{R}^3 in the case that

$$W = \operatorname{Span} \left\{ \begin{bmatrix} 4\\1\\3 \end{bmatrix}, \begin{bmatrix} 3\\1\\2 \end{bmatrix} \right\}, \qquad A = \begin{bmatrix} 4 & -1 & -5\\1 & 1 & -2\\1 & 0 & -1 \end{bmatrix}.$$

4. Let $\lambda \in \mathbb{R}$ be a given number. Find all real 2×2 matrices A such that

$$\mathcal{N}(A - \lambda I) = \operatorname{Span}\{e_2\}, \qquad \mathcal{N}(A - \lambda I)^2 = \operatorname{Span}\{e_1, e_2\} = \mathbb{R}^2.$$

1. Find the Jordan form and a Jordan basis for the matrix

$$A = \begin{bmatrix} -1 & 1 & 2 \\ -7 & 5 & 3 \\ -5 & 1 & 6 \end{bmatrix}.$$

- **2.** Suppose that A is a 4×4 matrix whose column space is equal to its null space. Show that A^2 must be the zero matrix and find the Jordan form of A.
- **3.** Suppose that A is a 4×4 matrix whose only eigenvalue is $\lambda = 1$. Suppose also that the column space of A I is one-dimensional. Find the Jordan form of A.
- **4.** Suppose that A is a 2×2 matrix with $A^2 = I$. Show that A is diagonalisable.

1. The following matrix has $\lambda = 1$ as a triple eigenvalue. Use this fact to find its Jordan form, its minimal polynomial and also its inverse.

$$A = \begin{bmatrix} -1 & 4 & -4 \\ -2 & 5 & -4 \\ -1 & 2 & -1 \end{bmatrix}.$$

- **2.** Suppose A is a non-diagonalisable 3×3 matrix such that $A^3 = A^2$. What are the two possible minimal polynomials of A? What are the two possible Jordan forms?
- **3.** Define a bilinear form on \mathbb{R}^2 by setting

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = 3x_1y_1 + x_1y_2 + x_2y_1 + 3x_2y_2.$$

Find the matrix A of this form with respect to the standard basis and then find the matrix with respect to a basis consisting of eigenvectors of A.

4. Let P_1 be the space of all real polynomials of degree at most 1 and define

$$\langle f, g \rangle = \int_0^1 (x+1)f(x)g(x) dx$$
 for all $f, g \in P_1$.

Find the matrix A of this bilinear form with respect to the standard basis.

1. Find an orthogonal matrix B such that B^tAB is diagonal when

$$A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}.$$

- **2.** A real matrix A is called skew-symmetric, if $A^t = -A$. Show that the eigenvalues of such a matrix are purely imaginary, namely of the form $\lambda = iy$ with $y \in \mathbb{R}$.
- 3. Show that $\mathbf{x}^t A \mathbf{x} = \lambda ||\mathbf{x}||^2$ whenever \mathbf{x} is a real eigenvector of A with eigenvalue λ . Can a positive definite matrix have a negative eigenvalue? Explain.
- **4.** Find a 2×2 symmetric matrix A with eigenvalues $\lambda = 1, 2$ such that $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ is an eigenvector of A with eigenvalue $\lambda_1 = 1$.
- **5.** Find an orthonormal basis of \mathbb{R}^3 that consists entirely of eigenvectors of

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}.$$

1. Find the values of a for which the matrix A is positive definite when

$$A = \begin{bmatrix} a & 1 & a \\ 1 & a & 1 \\ a & 1 & 2 \end{bmatrix}.$$

- 2. Prove the converse of the spectral theorem: if A is a real matrix such that B^tAB is diagonal for some orthogonal matrix B, then A must actually be symmetric.
- **3.** Find all $n \times n$ real symmetric matrices A such that $A^3 = I_n$.
- **4.** Show that $A = I_n + vv^t$ is positive definite symmetric for each vector $v \in \mathbb{R}^n$.
- **5.** Find the values of a for which Q(x, y, z) is positive definite when

$$Q(x, y, z) = x^{2} + (a + 2)y^{2} + az^{2} + 2axy + 2axz + 2yz.$$

6. Suppose that A is a real positive definite symmetric matrix. Show that there exists a real positive definite symmetric matrix Q such that $Q^2 = A$.