
Linear algebra II

Homework #8 solutions

1. Find an orthogonal matrix B such that BtAB is diagonal when

A =





4 2 0
2 3 2
0 2 2



 .

The eigenvalues of A are the roots of the characteristic polynomial

f(λ) = det(A− λI) = −λ3 + 9λ2 − 18λ = −λ(λ− 3)(λ− 6).

This gives λ1 = 0, λ2 = 3 and λ3 = 6, while the corresponding eigenvectors are

v1 =





1
−2
2



 , v2 =





−2
1
2



 , v3 =





2
2
1



 .

Since the eigenvalues are distinct, the eigenvectors are orthogonal to one another. We may
thus divide each of them by its length to obtain an orthogonal matrix B such that

B =





1/3 −2/3 2/3
−2/3 1/3 2/3
2/3 2/3 1/3



 =⇒ BtAB = B−1AB =





0
3

6



 .

2. Let P1 be the space of all real polynomials of degree at most 1 and let

〈f, g〉 =
∫

1

−1

3x · f(x)g(x) dx for all f, g ∈ P1.

Find the matrix A of this bilinear form with respect to the standard basis and then find
an orthogonal matrix B such that BtAB is diagonal.

By definition, the entries of the matrix A are given by the formula

aij = 〈xi−1, xj−1〉 =
∫

1

−1

3xi+j−1 dx.

This gives aij = 0 when i+ j is even and also aij = 6/(i+ j) when i+ j is odd, so

A =

[

0 2
2 0

]

.



The eigenvalues of A are λ1 = 2 and λ2 = −2, while the corresponding eigenvectors are

v1 =

[

1
1

]

, v2 =

[

1
−1

]

.

Since the eigenvalues are distinct, the eigenvectors are orthogonal to one another. We may
thus divide each of them by its length to obtain an orthogonal matrix B such that

B =

[

1/
√
2 1/

√
2

1/
√
2 −1/

√
2

]

=⇒ BtAB = B−1AB =

[

2
−2

]

.

3. Show that every eigenvalue λ of a real orthogonal matrix B has absolute value 1. In
other words, show that every eigenvalue λ of B satisfies λλ = 1.

Assuming that v is an eigenvector of B with eigenvalue λ, we get

λλ〈v, v〉 = 〈λv, λv〉 = 〈Bv, Bv〉 = 〈B∗Bv, v〉.

Since B is real and orthogonal, one has B∗B = BtB = In and this implies that

λλ〈v, v〉 = 〈B∗Bv, v〉 = 〈v, v〉 =⇒ λλ = 1.

4. Suppose that v1, v2, . . . , vn form an orthonormal basis of Rn and consider the n× n
matrix A = In − 2v1v

t
1. Show that A is symmetric, orthogonal and diagonalisable.

To say that A is symmetric is to say that At = A and this is true because

At = I tn − 2(v1v
t
1)

t = In − 2vtt
1 v

t
1 = In − 2v1v

t
1 = A.

To say that A is orthogonal is to say that AtA = In and this is true because

AtA = AA = (In − 2v1v
t
1)(In − 2v1v

t
1) = In − 4v1v

t
1 + 4v1(v

t
1v1)v

t
1 = In.

Finally, we show that A is diagonalisable. This follows by the spectral theorem, but it can
also be verified directly by showing that each vi is an eigenvector of A. In fact, one has

Av1 = v1 − 2v1(v
t
1v1) = −v1,

Avk = vk − 2v1(v
t
1vk) = vk

for each 2 ≤ k ≤ n. This gives n linearly independent eigenvectors, so A is diagonalisable.


