
Linear algebra II

2016 exam solutions

1. Find a matrix A that has v1 as an eigenvector with eigenvalue λ1 = 4 and v2 as an
eigenvector with eigenvalue λ2 = 5 when

v1 =

[

1
1

]

, v2 =

[

2
1

]

.

If B is the matrix whose columns are v1 and v2, then the general theory implies that

B−1AB =

[

λ1

λ2

]

=

[

4
5

]

.

Once we now solve this equation for A, we may conclude that

A =

[

1 2
1 1

]

·
[

4
5

]

·
[

1 2
1 1

]

−1

= −
[

4 10
4 5

]

·
[

1 −2
−1 1

]

=

[

6 −2
1 3

]

.

2. Find the Jordan form and a Jordan basis for the matrix

A =





4 −7 5
1 −3 4
1 −6 7



 .

The characteristic polynomial of the given matrix is

f(λ) = det(A− λI) = −λ3 + 8λ2 − 21λ+ 18 = (2− λ)(λ− 3)2.

Thus, the eigenvalues are λ = 2, 3, 3 and one can easily determine the null spaces

N (A− 2I) = Span











1
1
1











, N (A− 3I) = Span











2
1
1











.

This implies that A is not diagonalisable and that its Jordan form is

J = B−1AB =





2
3
1 3



 .

To find a Jordan basis, we need to find vectors v1,v2,v3 such that v1 is an eigenvector with
eigenvalue λ = 2 and v2,v3 is a Jordan chain with eigenvalue λ = 3. In our case, we have

N (A− 3I)2 = Span











5
1
0



 ,





−3
0
1











,



so it easily follows that a Jordan basis is provided by the vectors

v1 =





1
1
1



 , v2 =





5
1
0



 , v3 = (A− 3I)v2 =





−2
−1
−1



 .

3. The following matrix A has a triple eigenvalue. Find the minimal polynomial of A
and use it to determine the inverse of A.

A =





3 −2 1
2 −2 2
3 −6 5



 .

There is a triple eigenvalue λ and the sum of the eigenvalues is the trace of A, so

3λ = trA = 3− 2 + 5 = 6 =⇒ λ = 2.

The number of Jordan blocks is the dimension of N (A− 2I) and row reduction gives

A− 2I =





1 −2 1
2 −4 2
3 −6 3



 −→





1 −2 1
0 0 0
0 0 0



 .

Thus, there are two free variables and two Jordan blocks, so there is a 2× 2 block as well as
an 1× 1 block. Since the largest block is 2× 2, the minimal polynomial is

m(λ) = (λ− 2)2 = λ2 − 4λ+ 4.

The given matrix must obviously satisfy this polynomial, so

4I = 4A− A2 = A(4I − A) =⇒ A−1 =
1

4
(4I − A) =

1

4





1 2 −1
−2 6 −2
−3 6 −1



 .

4. Let Q be the quadratic form on R
3 which is defined by the formula

Q(x, y, z) = 2x2 + (a+ 4)y2 + (a+ 4)z2 + 2axy + 6axz.

Find the values of the real parameter a for which the form is positive definite.

The given quadratic can be expressed in the form Q(x) = x
tAx, where

A =





2 a 3a
a a+ 4 0
3a 0 a+ 4



 .



According to Sylvester’s criterion, this matrix is positive definite if and only if

det

[

2 a
a a+ 4

]

= 2a+ 8− a2, detA = −10a3 − 38a2 + 16a+ 32

are both positive. When it comes to the first determinant, one finds that

2a+ 8− a2 > 0 ⇐⇒ (a+ 2)(a− 4) < 0 ⇐⇒ −2 < a < 4.

When it comes to the second determinant, one similarly finds that

detA = −10a3 − 38a2 + 16a+ 32 = −2(a− 1)(a+ 4)(5a+ 4).

It easily follows that A is positive definite if and only if −4/5 < a < 1.

5. Suppose that A is an invertible n× n real matrix. Show that there exists a positive
definite symmetric matrix P such that P 2 = AtA.

The matrix AtA is symmetric because (AtA)t = AtAtt = AtA and positive definite, as

x
t(AtA)x = (Ax)t(Ax) = ||Ax||2 > 0

for all x 6= 0. It follows by the spectral theorem that there exists an orthogonal matrix B
such that D = Bt(AtA)B is diagonal. The diagonal entries of D are the eigenvalues λi of
the matrix AtA and those are all positive. Let us denote by C the diagonal matrix whose
diagonal entries are

√
λi. Then C is symmetric with C2 = D and we also have

(BCBt)2 = BCBt ·BCBt = BC2Bt = BDBt = AtA.

In particular, the matrix P = BCBt satisfies the given condition. This matrix is symmetric
because P t = BttCtBt = BCBt = P and it is positive definite because its eigenvalues are
the same as the eigenvalues of C, so they are all positive.


