MA121 Tutorial Problems #6
Solutions

. Find the radius of convergence for each of the following power series:
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One always uses the ratio test to find the radius of convergence. In the first case,
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so the series converges when |z|/3 < 1 and diverges when |z|/3 > 1. Thus, the series
converges when |z| < 3 and diverges when |z| > 3; this also means that R = 3.

When it comes to the second series, a similar computation gives
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and it easily follows that the radius of convergence is R = 1.
When it comes to the last series, finally, we have
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and this implies that
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Thus, the series converges when |z| < 4 and diverges when |z| > 4 so that R = 4.

. Although a power series may be differentiated term by term, this is not really the case
for an arbitrary series. In fact, an infinite sum of continuous/differentiable functions
does not even have to be continuous/differentiable itself. To see this, let
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and check that [ is not continuous at x = 0, even though each f, is.



Each f, is a rational function which is defined at all points, so each f, is continuous

at all points. To show that f is not continuous, let us first recall the formula
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which is valid whenever |y| < 1. Using this formula, one easily finds that
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whenever ﬁ < 1. This gives f(z) = 1 + 2? whenever = # 0, and we also have
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In particular, f is not continuous at x = 0 because

lim f(x) = lim (1+2%) = 1 # (0).
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. Consider the function f defined by the power series
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Show that f is defined for all x € R and that we also have
fl(@) = f(=), f(0) = 1.

Use part (a) to show that f(z)f(—x) =1 and that f(x) > 0 for all z € R.
To show that the given series converges for all z, we use the ratio test. Since
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we have L < 1 for any x whatsoever, so the series converges for any x whatsoever.
To show that f'(z) = f(x), we differentiate the series term by term to get
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e To show that f(z)f(—x) =1, we let g(x) = f(z)f(—x) and we note that

g(x) = f'(x)- f(=2)+ f(x) - f'(=2) - (=)
= f(x) - f(=2) = fz) - f(=2)
=0.

In particular, g(z) is constant and we have g(z) = ¢g(0) = f(0)* = 1.

e Since f(z)f(—x) =1 by above, f can never be zero. According to Bolzano’s theorem
then, f is either positive at all points or else negative at all points. Since f(0) = 1,
this means that f must actually be positive at all points.



