MA121 Tutorial Problems #3
Solutions

1. FEvaluate each of the following limits:
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e To find the limit of a rational function as x — 4 oo, one divides both the numerator
and the denominator by the highest power of x in the denominator. In this case,
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and a similar computation gives
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2. Find the minimum value of f(z) = (22* — 5z + 2)3 over the closed interval [0, 1].

e Since f is continuous on a closed interval, it suffices to check the endpoints, the points
at which f’ does not exist and the points at which f’ is equal to zero. In this case,

f'(z) = 3(22% — 5z + 2)? - (22% — 5x + 2’
(22 — 5x +2)* - (4o — 5)
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is zero when z = 5/4 and also when the quadratic factor is zero, namely when
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r=2, x=1/2.
Since x = 5/4 and x = 2 do not lie in the given closed interval, this means that
x =0, x =1, r=1/2
are the only points at which the minimum value may occur. Once we now compute

f0)=8,  f)=-1,  f(1/2) =0,

we may finally conclude that the minimum value is f(1) = —1.



. Show that logx < x —1 for all x > 0.

Letting f(x) =logx — z + 1 for convenience, one easily finds that
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Thus, f'(x) is positive if and only if 1 — x > 0, hence if and only if x < 1. This shows
that f is increasing when x < 1 and also decreasing when x > 1, so

max f(z) = f(1) =logl =1+1=0 = f(z) <maxf(z) =0.
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. Compute each of the following limits:
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Since the first limit gives 0o/0co, we may apply L'Hopital’s rule to get
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This is still an co/oo limit, and another application of L’Hopital’s rule gives
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The second limit gives 0/0, so L’Hopital’s rule is applicable and we find
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The last limit gives 0/0 as well, so we may apply L’Hopital’s rule once again to get
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. Suppose that x > y > 0. Using the mean value theorem or otherwise, show that

1—g<10gx—logy<£—1.
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Letting f(x) = logx for convenience, we use the mean value theorem to find that
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for some y < ¢ < z. Inverting these positive numbers reverses the inequality, hence
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= 1—y<loga:—logy<£—1.
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