MA121 Tutorial Problems #4

1. Suppose f is continuous on [a, b]. Show that there exists some $c \in (a, b)$ such that

$$\int_{a}^{b} f(t) dt = (b-a) \cdot f(c).$$

As a hint, apply the mean value theorem to the function $F(x) = \int_a^x f(t) dt$.

2. Suppose that $\sin x$ and $\cos x$ are two functions with the following properties:

 $(\sin x)' = \cos x, \qquad (\cos x)' = -\sin x, \qquad \sin 0 = 0, \qquad \cos 0 = 1.$

Show that $(\sin x)^2 + (\cos x)^2$ must be constant, namely $(\sin x)^2 + (\cos x)^2 = 1$.

3. Compute each of the following integrals:

$$\int \frac{\sin(1/x)}{x^2} \, dx, \qquad \int (x+1)(x+2)^5 \, dx, \qquad \int \frac{x}{\sqrt{x+1}} \, dx, \qquad \int xe^x \, dx.$$

4. Compute each of the following integrals:

$$\int (\sin x)^3 \, dx, \qquad \int \frac{x}{e^x} \, dx, \qquad \int e^{\sqrt{x}} \, dx, \qquad \int \frac{\log x}{x^2} \, dx$$

- These are all practice problems, not a homework assignment.
- However, part of your next homework assignment will be based on these problems.
- In case you get stuck, some hints are provided on the other page of this sheet.

Hints and comments

1. According to the mean value theorem, there exists some $c \in (a, b)$ such that

$$\frac{F(b) - F(a)}{b - a} = F'(c).$$

Simplify this equation by noting that F(a) = 0 and that F'(x) = f(x) for all x.

- **2.** Let $f(x) = (\sin x)^2 + (\cos x)^2$. Check that f'(x) = 0 and note that f(0) = 1.
- **3a.** Use the substitution $u = 1/x = x^{-1}$, which gives $du = -x^{-2} dx$.

3b. Use the substitution u = x + 2. Split the resulting integral into two parts.

3c. Use the substitution u = x + 1. Split the resulting integral into two parts.

3d. Use either integration by parts or tabular integration.

4a. Write $\sin^3 x = (1 - \cos^2 x) \sin x$ and then split the given integral into two parts.

4b. You need to integrate xe^{-x} . Use either integration by parts or tabular integration.

4c. Use the substitution $u = \sqrt{x}$. This gives $x = u^2$ so that dx = 2u du and

$$\int e^{\sqrt{x}} \, dx = 2 \int u e^u \, du.$$

Note that you have already computed the rightmost integral; see question 3.

4d. Integrate by parts using $u = \log x$ and $dv = x^{-2} dx$.