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1. Let A,B be nonempty subsets of R such that inf A < inf B. Show that there exists an

element a ∈ A which is a lower bound of B.

2. Let f be the function defined by

f(x) =





3x + 1 if x ∈ Q
6− 2x if x /∈ Q



 .

Show that f is continuous at y = 1.

3. Show that 2e · x2 log x ≥ −1 for all x > 0. Here, e is the usual constant e ≈ 2.718.

4. Compute each of the following integrals:

∫
4x2 − 5x + 2

x3 − x2
dx,

∫
sin3 x dx.

5. Using the mean value theorem, or otherwise, show that

(b− a)ea < eb − ea < (b− a)eb whenever a < b.

6. Test each of the following series for convergence:

∞∑
n=1

2n + 4n

3n + 5n
,

∞∑
n=1

sin(1/n2).

7. Suppose f, g are integrable on [a, b] with f(x) ≤ g(x) for all x ∈ [a, b]. Show that

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

8. Letting f(x, y) = log(x2 + y2), find the rate at which f is changing at the point (2, 3)

in the direction of the vector v = 〈3, 4〉.

9. Classify the critical points of the function defined by f(x, y) = x2 + 2y2 − x2y.

10. Compute the double integrals (I have included several of those for practice)

∫ π

0

∫ π

x

sin y

y
dy dx,

∫ 1

0

∫ 1

y

x2exy dx dy,

∫ 2

0

∫ 4

x2

xey2

dy dx.
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