MA121, Homework #26
Solutions

. Test each of the following series for convergence:
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To test the first series for convergence, we use the limit comparison test with
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Note that the limit comparison test is, in fact, applicable here because
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Since the series ) | b, is a divergent p-series, the series Y~ | a, must also diverge.

To test the second series for convergence, we use the ratio test. In this case,
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is strictly less than 1, so the second series converges by the ratio test.

For the third series, we use the comparison test. Since
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and the rightmost series converges by above, the leftmost series converges as well.

For the last series, finally, we use the nth term test. In this case, we have
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Since the nth term fails to approach zero, the last series must thus diverge.



. Test each of the following series for convergence:
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To test the first series for convergence, we use the ratio test. In this case,
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is strictly less than 1, so the first series converges by the ratio test.

To test the second series for convergence, we use the limit comparison test with
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Note that the limit comparison test is, in fact, applicable here because
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Since >~ b, is a convergent p-series, the series ) | a, must also converge.

To test the third series for convergence, one can use the ratio test to get
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this implies convergence due to the ratio test. Alternatively, one can argue that
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and that this implies convergence due to the comparison test.

When it comes to the last series, convergence follows easily by the alternating series
test because |a,| = 1/n is positive and decreasing with
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