
MA121, Homework #4
Solutions

1. Let f be the function defined by

f(x) =

{
0 if x 6= 0
1 if x = 0

}
.

Show that f is integrable on [0, 1].

• Given any partition P = {x0, x1, . . . , xn} of the interval [0, 1], one clearly has

S−(f, P ) =
n−1∑

k=0

inf
[xk,xk+1]

f(x) · (xk+1 − xk) = 0

because all the summands are zero. This also implies that sup S−(f, P ) = 0 as well.
Using a similar computation for the upper sums, one finds

S+(f, P ) =
n−1∑

k=0

sup
[xk,xk+1]

f(x) · (xk+1 − xk) = 1 · (x1 − x0) = x1.

This gives inf S+(f, P ) = inf x1 = 0 and thus f is integrable on [0, 1], indeed.

2. Suppose f, g are both integrable on [a, b] and f(x) ≤ g(x) for all x ∈ [a, b]. Show that
∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

• Let P = {x0, x1, . . . , xn} be a partition of [a, b]. Starting with the inequality

f(x) ≤ g(x) for all x ∈ [xk, xk+1],

we may take the infimum of both sides to get

inf
[xk,xk+1]

f(x) ≤ inf
[xk,xk+1]

g(x).

Multiplying by the positive quantity xk+1 − xk and then adding, we conclude that

n−1∑

k=0

inf
[xk,xk+1]

f(x) · (xk+1 − xk) ≤
n−1∑

k=0

inf
[xk,xk+1]

g(x) · (xk+1 − xk).

Since the last inequality holds for all partitions P , we must thus have

S−(f, P ) ≤ S−(g, P )

for all partitions P . Taking the supremum of both sides, we finally deduce that
∫ b

a

f(x) dx = sup
P

S−(f, P ) ≤ sup
P

S−(g, P ) =

∫ b

a

g(x) dx.



3. Show that there exists a unique function f which is defined for all x ∈ R and satisfies

f ′(x) = e−x2

, f(0) = 0.

• Being continuous, the function g(x) = e−x2
is integrable, and we also have

f(x) =

∫ x

0

e−t2 dt =⇒ f ′(x) = e−x2

by the fundamental theorem of calculus. Since f(0) = 0 by above, we conclude that f
has the desired properties. Suppose that g also does, namely suppose

g′(x) = e−x2

= f ′(x), g(0) = 0 = f(0).

Then g(x)− f(x) must be constant and so g(x)− f(x) = g(0)− f(0) = 0 for all x.

4. Let f be the function of the previous exercise. Show that f is increasing and that

0 ≤ f(x) ≤ x for all x ≥ 0.

• Since f ′(x) = e−x2
> 0, it is clear that f is increasing. In addition, we have

0 ≤ e−x2 ≤ e0 = 1

and we know that constant functions are integrable. Using exercise 2, we now get

0 ≤ e−t2 ≤ 1 =⇒
∫ x

0

0 dt ≤
∫ x

0

e−t2 dt ≤
∫ x

0

1 dt.

Since the integral in the middle is merely f(x) by definition, this actually gives

0(x− 0) ≤ f(x) ≤ 1(x− 0) =⇒ 0 ≤ f(x) ≤ x.
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