MA121, Homework #2 Solutions

- 1. Make a table listing the min, inf, max and sup of each of the following sets; write DNE for all quantities which fail to exist. You need not justify any of your answers.
 - (a) $A = \left\{ n \in \mathbb{N} : \frac{n}{n+1} < \frac{1}{2} \right\}$ (d) $D = \left\{ x \in \mathbb{R} : |x| < y \text{ for all } y > 0 \right\}$
 - (b) $B = \{x \in \mathbb{Z} : x > 2 \text{ and } 2x \le 9\}$ (e) $E = \{x \in \mathbb{R} : |x 2| < 3\}$
 - (c) $C = \{x \in \mathbb{R} : x < y \text{ for all } y \in \mathbb{N}\}$
- A complete list of answers is provided by the following table.

	min	\inf	\max	\sup
A	DNE	DNE	DNE	DNE
B	3	3	4	4
C	DNE	DNE	DNE	1
D	0	0	0	0
E	DNE	-1	DNE	5

- The set A contains all $n \in \mathbb{N}$ with 2n < n + 1; this gives n < 1 and so A is empty.
- The set B contains all integers x with $2 < x \le 9/2$; this means that $B = \{3, 4\}$.
- The set C contains all real numbers x with x < 1, namely $C = (-\infty, 1)$.
- The set D contains the real numbers x with -y < x < y for all y > 0. Since such a number is smaller than all positive reals and bigger than all negative ones, $D = \{0\}$.
- The set E contains the real numbers x with -3 < x 2 < 3, namely E = (-1, 5).
- **2.** Let f be a function such that f(1) = 5 and f(n+1) = 2f(n) + 1 for all $n \in \mathbb{N}$. Use induction to show that we actually have $f(n) = 3 \cdot 2^n 1$ for all $n \in \mathbb{N}$.
- When n = 1, we have $f(1) = 5 = 3 \cdot 2 1$ and so the given formula holds. Suppose that it holds for some n, in which case $f(n) = 3 \cdot 2^n 1$. Then we have

$$f(n+1) = 2f(n) + 1 = 2(3 \cdot 2^n - 1) + 1 = 3 \cdot 2^{n+1} - 1$$

and so it holds for n + 1 as well. This shows that the formula holds for all $n \in \mathbb{N}$.

- **3.** Suppose f, g are functions with $f(x) \le g(x)$ for all x. Show that $\sup f(x) \le \sup g(x)$.
- Since $\sup g(x)$ is an upper bound for the values g(x), it is clear that

$$f(x) \le g(x) \le \sup g(x)$$

for all x. This makes $\sup g(x)$ an upper bound for the values f(x). Since $\sup f(x)$ is the least upper bound for these values, we deduce that $\sup f(x) \leq \sup g(x)$.

4. Evaluate the limit

$$L = \lim_{x \to 1} \frac{x^3 + 3x^2 - 9x + 5}{(x-1)^2}$$

• Using division of polynomials, one easily finds that

$$L = \lim_{x \to 1} \frac{x^3 + 3x^2 - 9x + 5}{x^2 - 2x + 1} = \lim_{x \to 1} (x + 5) = 1 + 5 = 6$$

because limits of polynomial functions can be computed by simple substitution.

5. Show that the function f defined by

$$f(x) = \left\{ \begin{array}{ll} 2x - 7 & \text{if } x \leq 3\\ 8 - 3x & \text{if } x > 3 \end{array} \right\}$$

is continuous at y = 3.

• To prove that f is continuous at y = 3, let us first note that

$$|f(x) - f(3)| = |f(x) + 1| = \left\{ \begin{array}{ll} 2|x - 3| & \text{if } x \le 3\\ 3|3 - x| & \text{if } x > 3 \end{array} \right\}.$$

Now, let $\varepsilon > 0$ be given and set $\delta = \varepsilon/3$. Then $\delta > 0$ and we easily get

$$|x-3| < \delta \implies |f(x) - f(3)| \le 3|x-3| < 3\delta = \varepsilon.$$