Chapter 3

Derivatives

3.1 The definition of a derivative

Definition 3.1 (Average rate of change). Given a function f that is defined on the closed
interval [z, y], its average rate of change over [z, y| is defined as the ratio

fly) = f(x)
y—x

Definition 3.2 (Derivative). We say that f is differentiable at the point y, if the limit

i (y) — f(=)

a—y Y — T

exists. In the case that it does exist, we call it the derivative of f at y, and we also write

f/(y) — lim f(y) _ f(LE) )

-y Y—T
Intuitively speaking then, f’(y) is just the rate at which f changes around the point y.

Theorem 3.3 (Differentiable implies continuous). A function which is differentiable at a
point must necessarily be continuous at that point.

Example 3.4 (Continuous but not differentiable). The absolute value function f(x) = |z|
is continuous but not differentiable at y = 0.

Proposition 3.5 (Basic derivatives). Each of the following statements is true.
(a) The derivative of a constant function is equal to zero; that is, ¢ = 0 for all ¢ € R.

(b) The derivative of the identity function f(z) = z is equal to 1; that is, 2’ = 1.
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3.2 Differentiation rules

Proposition 3.6. The following rules of differentiation hold for each constant ¢ € R and all
differentiable functions f, g.

(a) The derivative of a sum is given by (f +¢g) = f' + ¢
(b) The derivative of a constant multiple is given by (cf) = cf’.
(c) Product Rule: the derivative of a product is given by (fg) = f'g + f¢g'.

(d) Quotient Rule: the derivative of a quotient is given by

(i)' _f9—1d
g 9°

at all points at which ¢ is nonzero.
Corollary 3.7. Given any natural number n, one has the formula
(xn)/ — n[En_l,

where the power 2° is defined by the rule 2° = 1 for all z € R.

Corollary 3.8 (Integral powers). Given any integer n, one has the formula

where negative powers of x are defined by the rule x=™ = 1/2™ for all z # 0.

Lemma 3.9. The derivative of f(x) = /x is given by f'(x) = ﬁ; for all x > 0.

Theorem 3.10 (Chain rule). If f, g are both differentiable, then their composition f o g is
also differentiable and its derivative is given by (f o g)'(z) = f'(g(x)) - ¢'(z).

Example 3.11. Using the chain rule, one finds that
fx)=(2*+3)° = fl(z)=5(*+3)" (2° +3) = 10z(a® + 3)*,

while a similar argument gives

f@) =Virs = [ = e
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3.3 Applications of derivatives

Theorem 3.12 (Location of min/max). Suppose f is continuous on the closed interval
[a,b]. Then f attains both a minimum and a maximum value on [a, b]. Moreover, these values
can only be attained at

e one of the endpoints a, b;
e a point z € (a,b) where the derivative f’(x) does not exist;
e a point x € (a,b) where the derivative f'(x) is zero.
Example 3.13. We determine the minimum and maximum values of the function
f(z) =2° -3z
over the closed interval [0, 2]. Note that f is differentiable on this interval and that
fl(x) =32 -3=3(2*-1)=3(x+1)(z - 1).
Thus, the only points at which the minimum/maximum values may occur are the points
r=—1, =1, r =0, xr = 2.
We now exclude the leftmost point, as this fails to lie in the interval [0, 2]. Since
f(1)y=1"-3=-2, f(0) =0, f2)=2>-3.2=2,
the minimum value is then f(1) = —2 and the maximum value is f(2) = 2.

Theorem 3.14 (ROLLE’S THEOREM). Suppose f is differentiable on the closed interval
la,b] and suppose f(a) = f(b). Then there exists some ¢ € (a,b) such that f'(c) = 0.

Application 3.15 (Number of roots). Combining Bolzano’s theorem with Rolle’s theorem,
we will show that the polynomial

f(z) =2%+ 3z +2
has exactly one real root. First of all, f is continuous on the closed interval [—1, 0] and
f(=1)=-1-34+2=-2<0, f(0)=2>0.
Thus, f has a root in (—1,0) by Bolzano’s theorem. Suppose f has two roots, say a < b. Then
fla)=f()=0
and we can apply Rolle’s theorem to find that f’(¢) = 0 for some ¢ € (a,b). On the other hand,
flle)=3+3>3

cannot possibly be zero, so this is a contradiction. In particular, f has exactly one root.
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Theorem 3.16 (MEAN VALUE THEOREM). Suppose f is differentiable on the closed
interval [a,b]. Then there exists some ¢ € (a, b) such that

EIUES (G}

Namely, the average rate of change is equal to the actual rate of change at some point.

Definition 3.17 (Increasing and decreasing). Suppose f is defined on some interval 1. We
say that f is

e increasing on I, if z <y = f(x) < f(y) for all z,y € I.

<
>

e decreasing on [, if x <y = f(x) > f(y) for all z,y € I.
e strictly increasing on I, if x <y = f(z) < f(y) for all z,y € I.
e strictly decreasing on [, if x <y = f(z) > f(y) for all z,y € I.

Plainly stated, (strictly) increasing functions preserve an inequality when applied to both sides
of an inequality, whereas (strictly) decreasing functions reverse it.

Warning. A constant function is considered to be increasing, yet not strictly increasing.
Theorem 3.18 (Up or down). Suppose that f is differentiable on some interval I.
(a) If f'(z) > 0 for all z € I, then f is strictly increasing throughout the interval.
(b) If f'(x) < 0 for all x € I, then f is strictly decreasing throughout the interval.
(c) If f/(x) =0 for all x € I, then f is constant throughout the interval.
Example 3.19. To compute the maximum value of f(r) = —3z* + 12z — 5, we note that
f'(z) = —6x+12 = —6(x — 2).

As for the sign of the derivative f’, this can be determined using the table below.

T 2
T —2 — +
fll@) | + —
flx) |/ N\

According to the table, f is strictly increasing on (—o0,2) and strictly decreasing on (2, +00).
In particular, f(2) = —3-4+412-2 — 5 =7 is the maximum value attained by f.

Remark. The only reason that we had to construct a table in our previous example was that
we did not really know that a maximum value exists; this piece of information is provided by
the table itself. If we were interested in the maximum value over a closed interval, instead, then
we could simply apply Theorem 3.12 and thus avoid the table.
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3.4 Logarithmic and exponential functions

Theorem 3.20 (Definition of log). There exists a unique function ¢(z) which is defined for
all x > 0 and satisfies the equation

It is usually denoted by ¢(z) = log z, and it is known as the logarithmic function. Moreover,
e logz™ = mlogx for all x > 0 and each m € Z;
e log(zy) = logz + logy for all z,y > 0; and
e log(z/y) =logz — logy for all z,y > 0.

Theorem 3.21 (Definition of exp). There exists a unique function e(x) which is defined for
all x € R and satisfies the equation

This function is known as the exponential function, and it also has the following properties:
e c(z)-e(—x) =1 for all z € R;
e e¢(z) >0 for all z € R;
o c(x+y)=ce(x)- e(y) for all z,y € R.

Proposition 3.22 (Properties of log and exp). Each of the following statements is true:
e both e(x) and log z are increasing functions;
e loge(x) =z for all x € R;
e ¢(logx) =z for all x > 0.

Lemma 3.23 (Arbitrary powers). Given any integer m, one has the formula

m

™ = e(mlogx) for all x > 0.

¥ using the formula

Given any real number k, we can thus define the power x
2% = e(klogx) for all x > 0.
It is then easy to show that e(x) = e(1)*. Once we now introduce the notation

e = e(l),

we may deduce the standard formula e(z) = e*, where e is some constant.
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Corollary 3.24. The formula log ¥ = klog = holds for all z > 0 and each k € R.
Corollary 3.25. The formula (%) = kxz*~! holds for all z > 0 and each k € R.
Example 3.26. We use logarithms to compute the derivative of the function

[E4 . (172 + 3)3 . 621

o) =Gy

This complicated function involves products, quotients and exponents that are not very easy
to differentiate directly. In order to overcome this difficulty, we begin by writing

flx)=a" (2 +3)%- ¥ (2" +1)7°,
thus getting rid of the quotient. Applying the logarithmic function, we then find
log f(z) = logz* + log(z* + 3)® + log e** + log(z* +1)7°
= 4logx + 3log(z* + 3) + 2x — 5log(z* + 1)
using the main properties of log. Once we now differentiate both sides, we arrive at

1 4 3

- 4a®.
f(x) r  x?2+3 PRI R

In particular, the derivative of f is given by

4 6 ) 2023 ) .

+ +2 -
x  x243 zt+1

Example 3.27. We'll compute the maximum value of f(z) = z'e™ over the interval (0, 00).
Using both the product rule and the chain rule, one finds that

fl(x) =42 e+ a2 e (=1) =da’e ™ —ate ™ = 2% (4 — 1).
According to the table below then, the maximum value is f(4) = 4%e~%.

T 0 4

+
f'(z) + -
/

3.5 Limits revisited
Theorem 3.28 (Squeeze law). Suppose that f, g, h are functions such that
f(z) < g(x) < h(zx) forall z€R.

Suppose also that lim f(z) = lim h(z) = L. Then it must be the case that lim g(z) = L.
T—Y
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Lemma 3.29 (Limits and continuity). Suppose that f is a continuous function. Then

i (g(0)) = f (1ol )

for all functions g for which the limit on the right hand side exists. In particular, the limit of
a logarithm is the logarithm of the limit and so on.

Theorem 3.30 (L’Hoépital’s rule). If f, g are differentiable with f(y) = ¢g(y) = 0, then
/
lim f(z) = lim —f (z)

=y g(z) o=y g'(2)

)l

as long as the limit on the right hand side exists. This rule allows us to compute limits of the
form 0/0, and the exact same rule applies for limits of the form oo/o0.

Example 3.31. When one tries to compute the limit

B 3 — 4z + T — 4
z—1 223 — 322 + 3z — 2

using simple substitution, one ends up with 0/0. In view of L’Hoépital’s rule, this implies

x4+ T —4 322 —8x+7T
L =1lim =lim ——— .
a—1 203 — 322 4+3x—2  a—1 622 —6x+3

Using simple substitution for the rightmost limit, we then finally arrive at

o 3x?—8r+7 3—-8+47 2
L = lim = = —.
z—1 622 —6x+3 6-—-6+3 3

Remark. To compute limits of the form oo - 0, one simply expresses them in such a way that
L’Hopital’s rule becomes applicable. As a simple example, one can write

1 log(1+1
lim xlog (1+—) = lim M,
x

where the limit on the left gives oo - 0 and the limit on the right gives 0/0.

Lemma 3.32. One has e¢* > x + 1 for all x € R. Moreover, one has

lim e* = oo, lim logx = oo

in the sense that both e* and log z can be made arbitrarily large for large enough .

Lemma 3.33 (A useful limit). Given any real number a, one has

lim (1 + g)m = e°.
x

T—00
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3.6 Convexity and concavity

Definition 3.34 (Convex and concave). Suppose f is defined on some interval I. We say
that f is convex on I, if the inequality

fltz+ (1 =t)z) <if(z) + (1 —1)f(z)

holds for all z,z € I and each 0 < t < 1. Similarly, we say that f is concave on I, if the exact
opposite inequality holds for all z,z € I and each 0 <t < 1.

Lemma 3.35 (Equivalent formulation). To say that f is convex is to say that

f(y)SZ:if(z)Jri:if(x) forall z <y < z.

In particular, any line that joins two points on the graph of a convex function must always lie
above the graph of the function, so the graph of a convex function looks like a smile U. In a
similar fashion, the graph of a concave function must look like a frown N.

Lemma 3.36 (Third formulation). To say that f is convex is to say that
fly) = f(x) _ f(z) = [(y)
y— N =Y

Theorem 3.37 (Smile or frown). Suppose that both f’ and f” exist on some interval I.

for all x <y < z.

(a) If f"(x) > 0 for all x € I, then f is convex on [ and its graph looks like a smile U.

(b) If f”(x) <0 for all z € I, then f is concave on I and its graph looks like a frown N.

Example 3.38. Let f(z) = 2° — 3x. Then f/(z) = 322 — 3 and f”(x) = 6z. Thus, f is convex
for all x > 0 and concave for all x < 0. The graph of this function is depicted below.

2

Theorem 3.39 (Second derivative test). Suppose f is a twice differentiable function.

(a) If f'(y) = 0 and f”(y) > 0 at some point y, then this point is a local minimum in the
sense that f can only attain larger values at nearby points.

(b) If f'(y) = 0 and f”(y) < 0 at some point y, then this point is a local maximum in the
sense that f can only attain smaller values at nearby points.



