
Chapter 3

Derivatives

3.1 The definition of a derivative

Definition 3.1 (Average rate of change). Given a function f that is defined on the closed
interval [x, y], its average rate of change over [x, y] is defined as the ratio

f(y)− f(x)

y − x
.

Definition 3.2 (Derivative). We say that f is differentiable at the point y, if the limit

lim
x→y

f(y)− f(x)

y − x

exists. In the case that it does exist, we call it the derivative of f at y, and we also write

f ′(y) = lim
x→y

f(y)− f(x)

y − x
.

Intuitively speaking then, f ′(y) is just the rate at which f changes around the point y.

Theorem 3.3 (Differentiable implies continuous). A function which is differentiable at a
point must necessarily be continuous at that point.

Example 3.4 (Continuous but not differentiable). The absolute value function f(x) = |x|
is continuous but not differentiable at y = 0.

Proposition 3.5 (Basic derivatives). Each of the following statements is true.

(a) The derivative of a constant function is equal to zero; that is, c′ = 0 for all c ∈ R.

(b) The derivative of the identity function f(x) = x is equal to 1; that is, x′ = 1.
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3.2 Differentiation rules

Proposition 3.6. The following rules of differentiation hold for each constant c ∈ R and all
differentiable functions f, g.

(a) The derivative of a sum is given by (f + g)′ = f ′ + g′.

(b) The derivative of a constant multiple is given by (cf)′ = cf ′.

(c) Product Rule: the derivative of a product is given by (fg)′ = f ′g + fg′.

(d) Quotient Rule: the derivative of a quotient is given by

(
f

g

)′
=

f ′g − fg′

g2

at all points at which g is nonzero.

Corollary 3.7. Given any natural number n, one has the formula

(xn)′ = nxn−1,

where the power x0 is defined by the rule x0 = 1 for all x ∈ R.

Corollary 3.8 (Integral powers). Given any integer n, one has the formula

(xn)′ = nxn−1,

where negative powers of x are defined by the rule x−m = 1/xm for all x 6= 0.

Lemma 3.9. The derivative of f(x) =
√

x is given by f ′(x) = 1
2
√

x
for all x > 0.

Theorem 3.10 (Chain rule). If f, g are both differentiable, then their composition f ◦ g is
also differentiable and its derivative is given by (f ◦ g)′(x) = f ′(g(x)) · g′(x).

Example 3.11. Using the chain rule, one finds that

f(x) = (x2 + 3)5 =⇒ f ′(x) = 5(x2 + 3)4 · (x2 + 3)′ = 10x(x2 + 3)4,

while a similar argument gives

f(x) =
√

x3 + x =⇒ f ′(x) =
1

2
√

x3 + x
· (x3 + x)′ =

3x2 + 1

2
√

x3 + x
.
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3.3 Applications of derivatives

Theorem 3.12 (Location of min/max). Suppose f is continuous on the closed interval
[a, b]. Then f attains both a minimum and a maximum value on [a, b]. Moreover, these values
can only be attained at

• one of the endpoints a, b;

• a point x ∈ (a, b) where the derivative f ′(x) does not exist;

• a point x ∈ (a, b) where the derivative f ′(x) is zero.

Example 3.13. We determine the minimum and maximum values of the function

f(x) = x3 − 3x

over the closed interval [0, 2]. Note that f is differentiable on this interval and that

f ′(x) = 3x2 − 3 = 3(x2 − 1) = 3(x + 1)(x− 1).

Thus, the only points at which the minimum/maximum values may occur are the points

x = −1, x = 1, x = 0, x = 2.

We now exclude the leftmost point, as this fails to lie in the interval [0, 2]. Since

f(1) = 13 − 3 = −2, f(0) = 0, f(2) = 23 − 3 · 2 = 2,

the minimum value is then f(1) = −2 and the maximum value is f(2) = 2.

Theorem 3.14 (ROLLE’S THEOREM). Suppose f is differentiable on the closed interval
[a, b] and suppose f(a) = f(b). Then there exists some c ∈ (a, b) such that f ′(c) = 0.

Application 3.15 (Number of roots). Combining Bolzano’s theorem with Rolle’s theorem,
we will show that the polynomial

f(x) = x3 + 3x + 2

has exactly one real root. First of all, f is continuous on the closed interval [−1, 0] and

f(−1) = −1− 3 + 2 = −2 < 0, f(0) = 2 > 0.

Thus, f has a root in (−1, 0) by Bolzano’s theorem. Suppose f has two roots, say a < b. Then

f(a) = f(b) = 0

and we can apply Rolle’s theorem to find that f ′(c) = 0 for some c ∈ (a, b). On the other hand,

f ′(c) = 3c2 + 3 ≥ 3

cannot possibly be zero, so this is a contradiction. In particular, f has exactly one root.
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Theorem 3.16 (MEAN VALUE THEOREM). Suppose f is differentiable on the closed
interval [a, b]. Then there exists some c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Namely, the average rate of change is equal to the actual rate of change at some point.

Definition 3.17 (Increasing and decreasing). Suppose f is defined on some interval I. We
say that f is

• increasing on I, if x ≤ y =⇒ f(x) ≤ f(y) for all x, y ∈ I.

• decreasing on I, if x ≤ y =⇒ f(x) ≥ f(y) for all x, y ∈ I.

• strictly increasing on I, if x < y =⇒ f(x) < f(y) for all x, y ∈ I.

• strictly decreasing on I, if x < y =⇒ f(x) > f(y) for all x, y ∈ I.

Plainly stated, (strictly) increasing functions preserve an inequality when applied to both sides
of an inequality, whereas (strictly) decreasing functions reverse it.

Warning. A constant function is considered to be increasing, yet not strictly increasing.

Theorem 3.18 (Up or down). Suppose that f is differentiable on some interval I.

(a) If f ′(x) > 0 for all x ∈ I, then f is strictly increasing throughout the interval.

(b) If f ′(x) < 0 for all x ∈ I, then f is strictly decreasing throughout the interval.

(c) If f ′(x) = 0 for all x ∈ I, then f is constant throughout the interval.

Example 3.19. To compute the maximum value of f(x) = −3x2 + 12x− 5, we note that

f ′(x) = −6x + 12 = −6(x− 2).

As for the sign of the derivative f ′, this can be determined using the table below.

x 2
x− 2 − +
f ′(x) + −
f(x) ↗ ↘

According to the table, f is strictly increasing on (−∞, 2) and strictly decreasing on (2, +∞).
In particular, f(2) = −3 · 4 + 12 · 2− 5 = 7 is the maximum value attained by f .

Remark. The only reason that we had to construct a table in our previous example was that
we did not really know that a maximum value exists; this piece of information is provided by
the table itself. If we were interested in the maximum value over a closed interval, instead, then
we could simply apply Theorem 3.12 and thus avoid the table.
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3.4 Logarithmic and exponential functions

Theorem 3.20 (Definition of log). There exists a unique function `(x) which is defined for
all x > 0 and satisfies the equation

`′(x) =
1

x
, `(1) = 0.

It is usually denoted by `(x) = log x, and it is known as the logarithmic function. Moreover,

• log xm = m log x for all x > 0 and each m ∈ Z;

• log(xy) = log x + log y for all x, y > 0; and

• log(x/y) = log x− log y for all x, y > 0.

Theorem 3.21 (Definition of exp). There exists a unique function e(x) which is defined for
all x ∈ R and satisfies the equation

e′(x) = e(x), e(0) = 1.

This function is known as the exponential function, and it also has the following properties:

• e(x) · e(−x) = 1 for all x ∈ R;

• e(x) > 0 for all x ∈ R;

• e(x + y) = e(x) · e(y) for all x, y ∈ R.

Proposition 3.22 (Properties of log and exp). Each of the following statements is true:

• both e(x) and log x are increasing functions;

• log e(x) = x for all x ∈ R;

• e(log x) = x for all x > 0.

Lemma 3.23 (Arbitrary powers). Given any integer m, one has the formula

xm = e(m log x) for all x > 0.

Given any real number k, we can thus define the power xk using the formula

xk = e(k log x) for all x > 0.

It is then easy to show that e(x) = e(1)x. Once we now introduce the notation

e = e(1),

we may deduce the standard formula e(x) = ex, where e is some constant.
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Corollary 3.24. The formula log xk = k log x holds for all x > 0 and each k ∈ R.

Corollary 3.25. The formula (xk)′ = kxk−1 holds for all x > 0 and each k ∈ R.

Example 3.26. We use logarithms to compute the derivative of the function

f(x) =
x4 · (x2 + 3)3 · e2x

(x4 + 1)5
.

This complicated function involves products, quotients and exponents that are not very easy
to differentiate directly. In order to overcome this difficulty, we begin by writing

f(x) = x4 · (x2 + 3)3 · e2x · (x4 + 1)−5,

thus getting rid of the quotient. Applying the logarithmic function, we then find

log f(x) = log x4 + log(x2 + 3)3 + log e2x + log(x4 + 1)−5

= 4 log x + 3 log(x2 + 3) + 2x− 5 log(x4 + 1)

using the main properties of log. Once we now differentiate both sides, we arrive at

1

f(x)
· f ′(x) =

4

x
+

3

x2 + 3
· 2x + 2− 5

x4 + 1
· 4x3.

In particular, the derivative of f is given by

f ′(x) = f(x) ·
(

4

x
+

6x

x2 + 3
+ 2− 20x3

x4 + 1

)
.

Example 3.27. We’ll compute the maximum value of f(x) = x4e−x over the interval (0,∞).
Using both the product rule and the chain rule, one finds that

f ′(x) = 4x3 · e−x + x4 · e−x · (−1) = 4x3e−x − x4e−x = x3e−x(4− x).

According to the table below then, the maximum value is f(4) = 44e−4.

x 0 4
4− x + −
f ′(x) + −
f(x) ↗ ↘

3.5 Limits revisited

Theorem 3.28 (Squeeze law). Suppose that f, g, h are functions such that

f(x) ≤ g(x) ≤ h(x) for all x ∈ R.

Suppose also that lim
x→y

f(x) = lim
x→y

h(x) = L. Then it must be the case that lim
x→y

g(x) = L.
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Lemma 3.29 (Limits and continuity). Suppose that f is a continuous function. Then

lim
x→y

f(g(x)) = f

(
lim
x→y

g(x)

)

for all functions g for which the limit on the right hand side exists. In particular, the limit of
a logarithm is the logarithm of the limit and so on.

Theorem 3.30 (L’Hôpital’s rule). If f, g are differentiable with f(y) = g(y) = 0, then

lim
x→y

f(x)

g(x)
= lim

x→y

f ′(x)

g′(x)
,

as long as the limit on the right hand side exists. This rule allows us to compute limits of the
form 0/0, and the exact same rule applies for limits of the form ∞/∞.

Example 3.31. When one tries to compute the limit

L = lim
x→1

x3 − 4x2 + 7x− 4

2x3 − 3x2 + 3x− 2

using simple substitution, one ends up with 0/0. In view of L’Hôpital’s rule, this implies

L = lim
x→1

x3 − 4x2 + 7x− 4

2x3 − 3x2 + 3x− 2
= lim

x→1

3x2 − 8x + 7

6x2 − 6x + 3
.

Using simple substitution for the rightmost limit, we then finally arrive at

L = lim
x→1

3x2 − 8x + 7

6x2 − 6x + 3
=

3− 8 + 7

6− 6 + 3
=

2

3
.

Remark. To compute limits of the form ∞ · 0, one simply expresses them in such a way that
L’Hôpital’s rule becomes applicable. As a simple example, one can write

lim
x→∞

x log

(
1 +

1

x

)
= lim

x→∞
log(1 + 1/x)

1/x
,

where the limit on the left gives ∞ · 0 and the limit on the right gives 0/0.

Lemma 3.32. One has ex ≥ x + 1 for all x ∈ R. Moreover, one has

lim
x→∞

ex = ∞, lim
x→∞

log x = ∞

in the sense that both ex and log x can be made arbitrarily large for large enough x.

Lemma 3.33 (A useful limit). Given any real number a, one has

lim
x→∞

(
1 +

a

x

)x

= ea.
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3.6 Convexity and concavity

Definition 3.34 (Convex and concave). Suppose f is defined on some interval I. We say
that f is convex on I, if the inequality

f(tz + (1− t)x) ≤ tf(z) + (1− t)f(x)

holds for all x, z ∈ I and each 0 < t < 1. Similarly, we say that f is concave on I, if the exact
opposite inequality holds for all x, z ∈ I and each 0 < t < 1.

Lemma 3.35 (Equivalent formulation). To say that f is convex is to say that

f(y) ≤ y − x

z − x
· f(z) +

z − y

z − x
· f(x) for all x < y < z.

In particular, any line that joins two points on the graph of a convex function must always lie
above the graph of the function, so the graph of a convex function looks like a smile ∪. In a
similar fashion, the graph of a concave function must look like a frown ∩.

Lemma 3.36 (Third formulation). To say that f is convex is to say that

f(y)− f(x)

y − x
≤ f(z)− f(y)

z − y
for all x < y < z.

Theorem 3.37 (Smile or frown). Suppose that both f ′ and f ′′ exist on some interval I.

(a) If f ′′(x) ≥ 0 for all x ∈ I, then f is convex on I and its graph looks like a smile ∪.

(b) If f ′′(x) ≤ 0 for all x ∈ I, then f is concave on I and its graph looks like a frown ∩.

Example 3.38. Let f(x) = x3− 3x. Then f ′(x) = 3x2− 3 and f ′′(x) = 6x. Thus, f is convex
for all x ≥ 0 and concave for all x ≤ 0. The graph of this function is depicted below.
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Theorem 3.39 (Second derivative test). Suppose f is a twice differentiable function.

(a) If f ′(y) = 0 and f ′′(y) > 0 at some point y, then this point is a local minimum in the
sense that f can only attain larger values at nearby points.

(b) If f ′(y) = 0 and f ′′(y) < 0 at some point y, then this point is a local maximum in the
sense that f can only attain smaller values at nearby points.


