
Chapter 1

Some basic concepts

1.1 The set of real numbers

Axioms 1.1 (Axioms for addition). Each of the following statements is true.

(A1) Commutative law: we have x + y = y + x for all x, y ∈ R.

(A2) Associative law: we have (x + y) + z = x + (y + z) for all x, y, z ∈ R.

(A3) Zero: There exists an element 0 ∈ R such that 0 + x = x for all x ∈ R.

(A4) Negatives: Given any x ∈ R, there exists a unique y ∈ R such that x + y = 0. We shall
denote this unique element by y = −x and also write z − w instead of z + (−w).

Lemma 1.2 (Addition in R). The following rules hold for addition in R.

(a) Cancellation law: we have x + y = x + z =⇒ y = z for all x, y, z ∈ R.

(b) Two negatives cancel: we have −(−x) = x for all x ∈ R.

Axioms 1.3 (Axioms for multiplication). Each of the following statements is true.

(M1) Commutative law: we have x · y = y · x for all x, y ∈ R.

(M2) Associative law: we have (x · y) · z = x · (y · z) for all x, y, z ∈ R.

(M3) One: There exists a real number 1 6= 0 such that 1 · x = x for all x ∈ R.

(M4) Inverses: Given any real number x 6= 0, there exists a unique y ∈ R such that x · y = 1.
We shall denote this unique element by y = 1/x and also write z/w instead of z · (1/w).

(M5) Distributive law: we have x · (y + z) = x · y + x · z for all x, y, z ∈ R.
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Lemma 1.4 (Multiplication in R). The following rules hold for multiplication in R.

(a) We have 0 · x = 0 for all x ∈ R.

(b) We have x · y = 0 =⇒ x = 0 or y = 0.

(c) We have (−x)y = −(xy) = x(−y) for all x, y ∈ R.

(d) Two negatives cancel: we have (−x)(−y) = xy for all x, y ∈ R.

(e) Two inverses cancel: given any x 6= 0, we have 1/(1/x) = x.

(f) Cancellation law: if xy = xz and x 6= 0, then we must have y = z.

Definition 1.5 (Ordered set). A set S is said to be ordered, if there is a relation < which is
defined between the elements of S in such a way that the following properties hold.

(O1) Trichotomy: given any two elements x, y ∈ S, exactly one of the three statements

x < y, x = y, y < x

is true. We shall write x ≤ y whenever either of the first two statements is true.

(O2) Transitivity: if x < y and y < z, then x < z.

Axioms 1.6 (Axioms for inequalities). The set R of all real numbers is an ordered set and
each of the following statements is true.

(I1) Cancellation law: we have x + y < x + z ⇐⇒ y < z for all x, y, z ∈ R.

(I2) Products of positive numbers: if x > 0 and y > 0, then xy > 0.

Notation. We shall use the notation 2 = 1 + 1, 3 = 1 + 1 + 1 and so on for the real numbers
obtained by adding 1 to itself. We shall similarly write x2 = x · x, x3 = x · x · x and so on.

Lemma 1.7 (Inequalities in R). The following rules hold for inequalities in R.

(a) We have x > 0 ⇐⇒ −x < 0 for all x ∈ R.

(b) Squares are non-negative: we have x2 ≥ 0 for all x ∈ R.

(c) Multiplying by positive numbers: if x > y and z > 0, then xz > yz.

(d) Multiplying by negative numbers: if x > y and z < 0, then xz < yz.

(e) Inverting positive numbers: if x > y are both positive, then 1
x

< 1
y
.

(f) Adding inequalities: if x > y and z > w, then x + z > y + w.
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Lemma 1.8 (Useful identities). Given any real numbers x and y, we have the identities

(x + y)2 = x2 + 2xy + y2, x2 − y2 = (x− y)(x + y).

Application 1.9 (Completing squares). Using the first identity above, one finds that

x2 − 4x = x2 − 4x + 4− 4 = (x− 2)2 − 4 ≥ −4

with equality if and only if x = 2. Using a similar computation, one finds that

−2x2 + 4x = −2(x2 − 2x + 1− 1) = −2(x− 1)2 + 2 ≤ 2

with equality if and only if x = 1.

Definition 1.10 (Absolute value). The absolute value of a real number x is defined by

|x| =
{

x if x ≥ 0
−x if x < 0

}
.

As you can easily convince yourselves, |x− y| measures the distance between x and y.

Lemma 1.11 (Properties of absolute values). Each of the following statements is true.

(a) We have |x| ≥ 0 and also |x| ≥ x for all x ∈ R.

(b) We have |x|2 = x2 for all x ∈ R and also |x · y| = |x| · |y| for all x, y ∈ R.

(c) Given any ε > 0, we have |x| < ε ⇐⇒ −ε < x < ε.

(d) Removing squares: If x, y are both non-negative, then x2 ≤ y2 ⇐⇒ x ≤ y.

(e) Triangle inequality: We have |x + y| ≤ |x|+ |y| for all x, y ∈ R.

1.2 Upper and lower bounds

Notation. We say that A is a subset of B and we write A ⊂ B whenever every element of A
is an element of B as well. A set that has no elements is said to be empty.

Definition 1.12 (max and sup). Suppose that A is a nonempty subset of R.

(a) The largest element of A, should one exist, is called the maximum of A.

(b) If there exists some x ∈ R such that x ≥ a for all a ∈ A, we say that x is an upper bound
of A and we also say that A is bounded from above.

(c) The least upper bound of A, should one exist, is called the supremum of A.

The maximum and the supremum of A are denoted by max A and sup A, respectively. Note
that max A is necessarily an element of A, whereas sup A need not be.
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Warning. By definition, the empty set has neither a maximum nor a supremum.

Example 1.13. Let A = {x ∈ R : x ≤ 0}. Then max A = 0 and sup A = 0.

Example 1.14. Let A = {x ∈ R : x < 0}. Then sup A = 0, still max A does not exist.

Example 1.15. Let A = {x ∈ R : x > 0}. Then neither sup A nor max A exists.

Theorem 1.16 (Average). Given any two real numbers x < y, there exists a real number z
such that x < z < y. In fact, the average z = x+y

2
of the two numbers is always such.

Axiom 1.17 (Completeness). Every nonempty subset of R that has an upper bound must
necessarily have a least upper bound, namely a supremum.

Notation. We shall denote by N = {1, 2, 3, . . .} the set of all natural numbers, and we shall
similarly denote by Z = {. . . ,−1, 0, 1, . . .} the set of all integers.

Lemma 1.18. The set N of all natural numbers has no upper bound.

Theorem 1.19 (Large integers). Given any x ∈ R, there exists some n ∈ N such that n > x.

Example 1.20. Let A =
{

n
n+1

: n ∈ N}
. Then max A does not exist, while sup A = 1.

Definition 1.21 (min and inf). Suppose that A is a nonempty subset of R.

(a) The smallest element of A, should one exist, is called the minimum of A.

(b) If there exists some x ∈ R such that x ≤ a for all a ∈ A, we say that x is a lower bound
of A and we also say that A is bounded from below.

(c) The greatest lower bound of A, should one exist, is called the infimum of A.

The minimum and the infimum of A are denoted by min A and inf A, respectively. Note that
min A is necessarily an element of A, whereas inf A need not be.

Warning. By definition, the empty set has neither a minimum nor an infimum.

Theorem 1.22 (Completeness). Every nonempty subset of R that has a lower bound must
necessarily have a greatest lower bound, namely an infimum.

Theorem 1.23 (minÃinf and maxÃsup). Let A be a nonempty subset of R.

(a) If min A exists, then inf A exists and the two are equal.

(b) If max A exists, then sup A exists and the two are equal.

Theorem 1.24 (infÃmin and supÃmax). Let A be a nonempty subset of R.

(a) If inf A exists and inf A ∈ A, then min A exists and the two are equal.

(b) If sup A exists and sup A ∈ A, then max A exists and the two are equal.
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Example 1.25. Let A = {x ∈ R : 0 ≤ x < 1}. Then max A does not exist, while

sup A = 1, min A = inf A = 0.

Example 1.26. Let A =
{

1
n

: n ∈ N}
. Then min A does not exist, while

inf A = 0, max A = sup A = 1.

Theorem 1.27 (inf/sup of subsets). Suppose that A ⊂ B are nonempty subsets of R.

(a) If inf B exists, then inf A exists and we have inf A ≥ inf B.

(b) If sup B exists, then sup A exists and we have sup A ≤ sup B.

Loosely speaking, this theorem says that larger sets have larger suprema but smaller infima.

Theorem 1.28 (Subsets of Z). Suppose that A is a nonempty subset of Z.

(a) If A has a lower bound, then A must actually have a minimum.

(b) If A has an upper bound, then A must actually have a maximum.

Example 1.29. Let A = {x ∈ Z : x < 1}. Then max A = 0, still min A does not exist.

Theorem 1.30 (Induction). To show that some statement holds for all n ∈ N, it suffices to

À check that the statement holds when n = 1;

Á assume that the statement holds for some n ∈ N and show that it holds for n + 1.

Example 1.31. We use induction to establish the formula

1 + 2 + . . . + n =
n · (n + 1)

2
for all n ∈ N.

À To show that the formula holds when n = 1, we have to check that

1 =
1 · (1 + 1)

2
⇐⇒ 2 = 1 + 1,

and this is certainly true. In particular, the given formula does hold when n = 1.
Á Suppose now that the formula holds for some n ∈ N, namely suppose that

1 + 2 + . . . + n =
n(n + 1)

2
.

Adding n + 1 to both sides and simplifying, we then get

1 + 2 + . . . + (n + 1) =
n(n + 1)

2
+ (n + 1) =

n(n + 1) + 2(n + 1)

2
=

(n + 1)(n + 2)

2
.

This shows that the formula holds for n + 1 as well, so it actually holds for all n ∈ N.
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Definition 1.32 (Rationals). The set Q of all rationals is defined by

Q =
{m

n
: m ∈ Z and n ∈ N

}
.

As one can easily check, both the sum and the product of two rationals is a rational itself. The
same is true for the inverse of nonzero rationals, hence also for quotients of rationals. A real
number which is not rational is called irrational.

Theorem 1.33 (Rationals in between). Given any two real numbers x < y, there exists a
rational number z ∈ Q such that x < z < y.

Theorem 1.34 (Square root of 2). There exists a unique, positive real number y such that

y2 = 2.

Moreover, this real number y is not rational, and we shall denote it by y =
√

2.

Theorem 1.35 (Irrationals in between). Given any two real numbers x < y, there exists
an irrational number z such that x < z < y.

1.3 Functions

Notation (Intervals). Given any real numbers a, b with a < b, we shall denote by

(a, b), [a, b), (a, b], [a, b]

the sets of all real numbers that lie between a and b. In each case, a square bracket is assigned
to points which belong to the set and a regular bracket to those which do not. For instance,

(a, b] = {x ∈ R : a < x ≤ b}

and so on. We shall also use the symbols −∞ and +∞ to denote intervals such as

(−∞, b), (−∞, b], (a, +∞), [a, +∞).

In this case, the intervals are defined by

(−∞, b) = {x ∈ R : x < b}

and so on. The symbols −∞ and +∞ are not elements of any interval themselves because they
are not real numbers; they do not even satisfy the usual rules of arithmetic such as 0 · ∞ = 0
and ∞/∞ = 1, for instance. These symbols are merely introduced to simplify the notation.

Definition 1.36 (Functions). A function f is a rule or formula which is defined for some real
numbers x and assigns a particular value f(x) to each admissible value of x. The set of all real
numbers x for which f is defined is called the domain of f .
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Definition 1.37 (Sums, products and quotients). Given two functions f and g, we define
their sum f + g, product f · g and quotient f/g in the obvious way. For instance,

(f · g)(x) = f(x) · g(x)

and so on. Note that the quotient f/g is not defined at points x ∈ R at which g(x) = 0.

Notation (inf/sup of functions). Given a function f and a nonempty subset A of the real
numbers, we shall write

inf
x∈A

f(x) instead of inf {f(x) : x ∈ A},

and we shall also write

inf
0<x<1

f(x) instead of inf {f(x) : 0 < x < 1}.

Moreover, we shall use a similar notation for the supremum of a function. In the case that A
is the set of all real numbers, one typically omits the subscript x ∈ A, thus writing

inf f(x) instead of inf
x∈R

f(x) = inf {f(x) : x ∈ R}.

Warning. Define f(x) = x and g(x) = −x for all x ∈ [0, 1]. Then we have

inf
0≤x≤1

f(x) = inf {x : 0 ≤ x ≤ 1} = 0,

inf
0≤x≤1

g(x) = inf {−x : 0 ≤ x ≤ 1} = −1.

In particular, the sum of the infima is not equal to the infimum of the sum

inf
0≤x≤1

[f(x) + g(x)] = inf {x− x : 0 ≤ x ≤ 1} = 0.

Theorem 1.38 (inf/sup of sums). Given any two functions f and g, one has

inf
x∈A

[f(x) + g(x)] ≥ inf
x∈A

f(x) + inf
x∈A

g(x)

and also
sup
x∈A

[f(x) + g(x)] ≤ sup
x∈A

f(x) + sup
x∈A

g(x)

for all sets A ⊂ R for which the infima/suprema on the right hand side exist.

Theorem 1.39 (inf/sup and inequalities). Loosely speaking, applying either inf or sup to
both sides of an inequality preserves the inequality. More formally, one has

f(x) ≤ g(x) for all x ∈ A =⇒ inf
x∈A

f(x) ≤ inf
x∈A

g(x)

and similarly
f(x) ≤ g(x) for all x ∈ A =⇒ sup

x∈A
f(x) ≤ sup

x∈A
g(x)

for all functions f, g and all sets A ⊂ R for which the above infima/suprema exist.
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Definition 1.40 (Special kinds of functions). A function f is said to be:

• constant, if there exists some b ∈ R such that f(x) = b for all x ∈ R.

• linear, if there exist some a, b ∈ R such that f(x) = ax + b for all x ∈ R.

• a polynomial, if there exist real numbers a0, a1, . . . , an such that

f(x) = a0 + a1x + . . . + anx
n for all x ∈ R.

• a rational function, if there exist polynomials P, Q such that

f(x) =
P (x)

Q(x)
for all x ∈ R with Q(x) 6= 0.

Example 1.41 (Division of polynomials). Using the division algorithm, one finds that

x3 + 2x2 − 3

x− 1
= x2 + 3x + 3 for all x 6= 1.

Using a similar computation, one also finds that

x5 − x3 + x2 − 2x + 1

x2 + 1
= x3 − 2x + 1 for all x ∈ R.


