
MA121, 2008 Exam #1
Solutions

1. Show that the set A = {x ∈ R : |x− 2| < 1} is such that sup A = 3.

• First of all, note that the given inequality is equivalent to

|x− 2| < 1 ⇐⇒ −1 < x− 2 < 1 ⇐⇒ 1 < x < 3;

this makes 3 an upper bound of A. To show it is the least upper bound of A, suppose
that y < 3 and consider two cases. If y ≤ 1, then 2 is an element of A which is bigger
than y. If 1 < y < 3, on the other hand, then the average y+3

2
is an element of A which

is bigger than y. This shows that no number y < 3 can be an upper bound of A.

2. Let f be the function defined by

f(x) =

{
2x− 1 if x ≤ 2
3x− 2 if x > 2

}
.

Show that f is not continuous at y = 2.

• We will show that the ε-δ definition of continuity fails when ε = 1. Suppose it does
not fail. Since f(2) = 3, there must then exist some δ > 0 such that

|x− 2| < δ =⇒ |f(x)− 3| < 1. (∗)
We now examine the last equation for the choice x = 2 + δ

2
. On one hand, we have

|x− 2| = δ

2
< δ,

so the assumption in equation (∗) holds. On the other hand, we also have

|f(x)− 3| = |3x− 5| = 1 +
3δ

2
> 1

because x = 2 + δ
2

> 2 here. This actually violates the conclusion in equation (∗).
3. Show that the polynomial f(x) = x3 − 4x2 − 3x + 1 has exactly one root in (0, 2).

• Being a polynomial, f is continuous on the closed interval [0, 2] and we also have

f(0) = 1 > 0, f(2) = −13 < 0.

Thus, f has a root in (0, 2) by Bolzano’s theorem. Suppose now that f has two roots
in (0, 2). Then f ′ must also have a root in (0, 2) by Rolle’s theorem. However,

f ′(x) = 3x2 − 8x− 3

and the roots of this quadratic are given by

x =
8±√64 + 4 · 3 · 3

2 · 3 =
8± 10

6
=⇒ x = 3, x = −1

3
.

Since neither of them lies in (0, 2), we conclude that f cannot have two roots in (0, 2).



4. Find the maximum value of f(x) = x(7− x2)3 over the closed interval [0, 3].

• Since f is continuous on a closed interval, it suffices to check the endpoints, the points
at which f ′ does not exist and the points at which f ′ is equal to zero. In our case,

f ′(x) = 1 · (7− x2)3 + x · 3(7− x2)2 · (7− x2)′

= (7− x2)2 · (7− x2 − 6x2)

= (7− x2)2 · 7(1− x2).

Keeping this in mind, the only points at which the maximum value may occur are

x = 0, x = 3, x = ± 1, x = ±
√

7.

Excluding the points that fail to lie in the given closed interval, we now compute

f(3) = −24, f(1) = 216, f(
√

7 ) = f(0) = 0.

Based on these facts, we may thus conclude that the maximum value is f(1) = 216.

5. Show that xex ≥ ex − 1 for all x ∈ R.

• Letting f(x) = xex − ex + 1 for convenience, one easily finds that

f ′(x) = ex + xex − ex = xex.

Since exponentials are always positive, this implies f ′(x) > 0 if and only if x > 0. In
particular, f is decreasing when x < 0 and also increasing when x > 0, so

min f(x) = f(0) = −e0 + 1 = 0 =⇒ f(x) ≥ min f(x) = 0.

6. Suppose that x > y > 0. Using the mean value theorem or otherwise, show that

1− y

x
< log

x

y
<

x

y
− 1.

• Letting f(x) = log x for convenience, we use the mean value theorem to find that

f ′(c) =
f(x)− f(y)

x− y
=⇒ 1

c
=

log x− log y

x− y

for some y < c < x. Inverting these positive numbers reverses the inequality, so

1

x
<

1

c
<

1

y
=⇒ 1

x
<

log x− log y

x− y
<

1

y

=⇒ 1− y

x
< log x− log y <

x

y
− 1.


