MA121, 2007 Final exam
Solutions

. Suppose that A is a nonempty subset of R that has a lower bound and let € > 0 be given.
Show that there exists an element a € A such that inf A < a <inf A+ €.

Note that inf A + € cannot be a lower bound of A because it is larger than the greatest
lower bound of A. This means that some a € A is such that ¢ < inf A + . On the other
hand, we must also have a > inf A because a € A and inf A is a lower bound of A.

. Show that the polynomial f(x) = x* — Tx* — 5x + 1 has ezactly one root in [0, 2].
Being a polynomial, f is continuous on the closed interval [0, 2] and we also have
f(0)=1>0, f(2)=8—-28—10+1=-29<0.

Thus, f has a root in [0, 2] by Bolzano’s theorem. Suppose it has two roots in [0,2]. In
view of Rolle’s theorem, f must then have a root in [0, 2] as well. On the other hand,

f'(z) =32° — 140 — 5
and the roots of this function are given by the quadratic formula

14++142+4-3-5 14+16
r = =
2-3 6

Since none of those lies in [0, 2], we conclude that f cannot have two roots in [0, 2].

r=>5 x=-1/3.
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. Find the mazimum value of f(x) = over the closed interval [0, 3].

Since we are dealing with a closed interval, it suffices to check the endpoints, the points
at which f’ does not exist and the points at which f’ is equal to zero. In this case,

2’ 4+8—-2z-(z+1)

- (22 4 8)? (z2+8)2 (22 4 8)?

2?4220 -8  (z+4)(z—-2)

f'(x)

and so the only points at which the maximum value may occur are

We exclude the leftmost point, which fails to lie in [0, 3], and we now compute

fO=r=1 fO=5. (@)=

Based on these observations, we deduce that the maximum value is f(2) = 1/4.

. Compute each of the following integrals:

6x + 9 3 22
/m dSC, /2I e’ dx.



e To compute the first integral, we factor the denominator and we write

6xr+9  6x+9 _A:v+B+ C
w3+ 322 22(r+3) a2 r+3

(%)
for some constants A, B, C' that need to be determined. Clearing denominators gives

6x +9 = (Ar + B)(x + 3) + Ca?

and we can now look at some suitable choices of z to find

r=-3 = -9=9C == C=-1,
r=—1 — 3=-24+2B+C — A=

Returning to equation (x), we now get

6x +9 T+ 3 1 1 3 1

34322 22 x+3 x 22 x4+3

and we may integrate this equation term by term to conclude that

6x +9
/ﬁ—;ﬂ dx = log |z| — 3z~ —log |z + 3| + C.

e For the second integral, we use the substitution u = 2. This gives du = 2z dx, hence

/2$36$2d$ = /2x-x26$2dx = /ue“ du.

Focusing on the rightmost integral, we integrate by parts to find that

/ue“du:/u(e")/ du:ue“—/e“du:ue“—e“—i-c.

Once we now combine the last two equations, we get
/2x3em2dx = /ue“ du = ue® — " + C = 22¢” — e + C.
5. Suppose f is continuous on [a,b]. Show that there exists some ¢ € (a,b) such that

/ F(t)dt = (b—a) - f(c).

As a hint, apply the mean value theorem to the function F(x f f(t)



According to the mean value theorem, there exists some ¢ € (a,b) such that

F(b) — F<a> /
SO T pie).
P (c)
In addition, we have F'(x) = f(z) for all x, and we also have

/ f(@) F(b) = /abf(t) dt

Once we now combine all these facts, we may conclude that

Fb)—F(a)=(b—a)-F'(¢c) = /f =(b—a)- f(c).
. Test each of the following series for convergence:
i n? + 2 - n!
n=1 n3+n’ n=1 nn.

To test the first series for convergence, we use the limit comparison test with

n?+2 n? 1
nd+n’ '

Ay =

Note that the limit comparison test is, in fact, applicable here because

a, n? 42 o on?42
lim — = lim -n = lim =
n—oo by, n—oo M3 +n n—oon2 + 1

Since the series >~ | b, is a divergent p-series, the series )~ | a,, must also diverge.

To test the second series for convergence, we use the ratio test. In this case, we have
a1 (n+1)! n" oo on \"
a,  nl (n+1)rtt (n4+1)n \n+1

and this implies that

n : S
Lzlima+1:11m< n ) =-.
n—oo Gy, n—oo \n + 1 e

Since e > 1, this limit is strictly less than 1 and so the given series converges.

. Let f be the function defined by

1 e
Show that f is not integrable on any closed interval [a, b].

3



Given a partition P = {xg,x1,...,2,} of the interval [a, b], one easily finds that

n—1

ST(fP)=)_ inf f(x) (zro— )

PR
= O(ZL‘l — l’o) -+ O([EQ - 171) + 0(1’3 — 1'2) + ...+ O(Z'n — ZL‘n_1> = O,
hence sup S~(f, P) = 0 as well. On the other hand, one also has

n—1

S+(f, P) = Z sup  f(2) - (Thy1 — 1)

k=0 [fﬂkark+1]
= 1(1’1 — .To) + 1(1‘2 — ZL’1) + 1(1‘3 — 1'2) 4+ ...+ 1<In — l’n_l)

=2, —29=b—a
so that inf ST(f, P) = b — a as well. This gives sup S~ # inf ST because b — a # 0.

. Suppose that z = z(r,s,t), where r =u—wv, s =v —w and t = w — u. Assuming that all
partial derivatives exist, show that z, + z, + z, = 0.

Using the definitions of r, s, t together with the chain rule, we get

Zu = ZpTu + 268y + Zity = 2 — 2
Zy = ZpTy + 258y + Zttv = -2+ 2

Zw = ZrTw + 268w + 2itw = —2s + 24
Adding these three equations, one now finds that z, + z, + 2z, = 0, indeed.
. Classify the critical points of the function defined by f(z,y) = 3xy — x> — 3°.

To find the critical points, we need to solve the equations
0= fw(x7y) = 3y - 35(72 = 3(y - .’L’2>7
0= fy(z,y) =3z — 3y* = 3(x — *).
These give y = 22 and also = y?, so we easily get

4 4

r=y’=2" = 2'-2=0 = 2°-1)=0 = 2=0,1.
In particular, the only critical points are (0,0) and (1,1).

In order to classify the critical points, we compute the Hessian matrix

N fex fay| |67 3
H_{fyw fyz]_[ 3 —Gy}'

When it comes to the critical point (0, 0), this gives

H:{g g} — detH =-9<0

4



so the origin is a saddle point. When it comes to the critical point (1,1), we have
-6 3
H = 3 6 — detH =36—-9>0

and also f,, = —6 < 0, so this critical point is a local maximum.

Lo
/ / e’ dx dy.
0 Jy

e To compute the given integral, we switch the order of integration to get

Lo Lope 1
/ / e’ dxdy:/ / e’ dydx:/ xe” dx.
0 Jy o Jo 0

2

10. Compute the double integral

Using the substitution u = x

1 1 1 1
1 u -1
//e””dedy:—/ e“du:[e—} ¢ )
0 Y 2 0 2 0 2

, we now get du = 2x dx, and this implies that




