
MA121, 2007 Final exam
Solutions

1. Suppose that A is a nonempty subset of R that has a lower bound and let ε > 0 be given.
Show that there exists an element a ∈ A such that inf A ≤ a < inf A + ε.

• Note that inf A + ε cannot be a lower bound of A because it is larger than the greatest
lower bound of A. This means that some a ∈ A is such that a < inf A + ε. On the other
hand, we must also have a ≥ inf A because a ∈ A and inf A is a lower bound of A.

2. Show that the polynomial f(x) = x3 − 7x2 − 5x + 1 has exactly one root in [0, 2].

• Being a polynomial, f is continuous on the closed interval [0, 2] and we also have

f(0) = 1 > 0, f(2) = 8− 28− 10 + 1 = −29 < 0.

Thus, f has a root in [0, 2] by Bolzano’s theorem. Suppose it has two roots in [0, 2]. In
view of Rolle’s theorem, f ′ must then have a root in [0, 2] as well. On the other hand,

f ′(x) = 3x2 − 14x− 5

and the roots of this function are given by the quadratic formula

x =
14±√142 + 4 · 3 · 5

2 · 3 =
14± 16

6
=⇒ x = 5, x = −1/3.

Since none of those lies in [0, 2], we conclude that f cannot have two roots in [0, 2].

3. Find the maximum value of f(x) = x+1
x2+8

over the closed interval [0, 3].

• Since we are dealing with a closed interval, it suffices to check the endpoints, the points
at which f ′ does not exist and the points at which f ′ is equal to zero. In this case,

f ′(x) =
x2 + 8− 2x · (x + 1)

(x2 + 8)2
= −x2 + 2x− 8

(x2 + 8)2
= −(x + 4)(x− 2)

(x2 + 8)2

and so the only points at which the maximum value may occur are

x = −4, x = 2, x = 0, x = 3.

We exclude the leftmost point, which fails to lie in [0, 3], and we now compute

f(2) =
3

12
=

1

4
, f(0) =

1

8
, f(3) =

4

17
.

Based on these observations, we deduce that the maximum value is f(2) = 1/4.

4. Compute each of the following integrals:
∫

6x + 9

x3 + 3x2
dx,

∫
2x3ex2

dx.
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• To compute the first integral, we factor the denominator and we write

6x + 9

x3 + 3x2
=

6x + 9

x2(x + 3)
=

Ax + B

x2
+

C

x + 3
(∗)

for some constants A, B, C that need to be determined. Clearing denominators gives

6x + 9 = (Ax + B)(x + 3) + Cx2

and we can now look at some suitable choices of x to find

x = −3 =⇒ −9 = 9C =⇒ C = −1,

x = 0 =⇒ 9 = 3B =⇒ B = 3,

x = −1 =⇒ 3 = −2A + 2B + C =⇒ A = 1.

Returning to equation (∗), we now get

6x + 9

x3 + 3x2
=

x + 3

x2
− 1

x + 3
=

1

x
+

3

x2
− 1

x + 3

and we may integrate this equation term by term to conclude that

∫
6x + 9

x3 + 3x2
dx = log |x| − 3x−1 − log |x + 3|+ C.

• For the second integral, we use the substitution u = x2. This gives du = 2x dx, hence

∫
2x3ex2

dx =

∫
2x · x2ex2

dx =

∫
ueu du.

Focusing on the rightmost integral, we integrate by parts to find that

∫
ueu du =

∫
u (eu)′ du = ueu −

∫
eu du = ueu − eu + C.

Once we now combine the last two equations, we get

∫
2x3ex2

dx =

∫
ueu du = ueu − eu + C = x2ex2 − ex2

+ C.

5. Suppose f is continuous on [a, b]. Show that there exists some c ∈ (a, b) such that

∫ b

a

f(t) dt = (b− a) · f(c).

As a hint, apply the mean value theorem to the function F (x) =
∫ x

a
f(t) dt.
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• According to the mean value theorem, there exists some c ∈ (a, b) such that

F (b)− F (a)

b− a
= F ′(c).

In addition, we have F ′(x) = f(x) for all x, and we also have

F (a) =

∫ a

a

f(t) dt = 0, F (b) =

∫ b

a

f(t) dt.

Once we now combine all these facts, we may conclude that

F (b)− F (a) = (b− a) · F ′(c) =⇒
∫ b

a

f(t) dt = (b− a) · f(c).

6. Test each of the following series for convergence:

∞∑
n=1

n2 + 2

n3 + n
,

∞∑
n=1

n!

nn
.

• To test the first series for convergence, we use the limit comparison test with

an =
n2 + 2

n3 + n
, bn =

n2

n3
=

1

n
.

Note that the limit comparison test is, in fact, applicable here because

lim
n→∞

an

bn

= lim
n→∞

n2 + 2

n3 + n
· n = lim

n→∞
n2 + 2

n2 + 1
= 1.

Since the series
∑∞

n=1 bn is a divergent p-series, the series
∑∞

n=1 an must also diverge.

• To test the second series for convergence, we use the ratio test. In this case, we have

an+1

an

=
(n + 1)!

n!
· nn

(n + 1)n+1
=

nn

(n + 1)n
=

(
n

n + 1

)n

and this implies that

L = lim
n→∞

an+1

an

= lim
n→∞

(
n

n + 1

)n

=
1

e
.

Since e > 1, this limit is strictly less than 1 and so the given series converges.

7. Let f be the function defined by

f(x) =

{
1 if x ∈ Q
0 if x /∈ Q

}
.

Show that f is not integrable on any closed interval [a, b].
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• Given a partition P = {x0, x1, . . . , xn} of the interval [a, b], one easily finds that

S−(f, P ) =
n−1∑

k=0

inf
[xk,xk+1]

f(x) · (xk+1 − xk)

= 0(x1 − x0) + 0(x2 − x1) + 0(x3 − x2) + . . . + 0(xn − xn−1) = 0,

hence sup S−(f, P ) = 0 as well. On the other hand, one also has

S+(f, P ) =
n−1∑

k=0

sup
[xk,xk+1]

f(x) · (xk+1 − xk)

= 1(x1 − x0) + 1(x2 − x1) + 1(x3 − x2) + . . . + 1(xn − xn−1)

= xn − x0 = b− a

so that inf S+(f, P ) = b− a as well. This gives sup S− 6= inf S+ because b− a 6= 0.

8. Suppose that z = z(r, s, t), where r = u− v, s = v − w and t = w − u. Assuming that all
partial derivatives exist, show that zu + zv + zw = 0.

• Using the definitions of r, s, t together with the chain rule, we get

zu = zrru + zssu + zttu = zr − zt

zv = zrrv + zssv + zttv = −zr + zs

zw = zrrw + zssw + zttw = −zs + zt.

Adding these three equations, one now finds that zu + zv + zw = 0, indeed.

9. Classify the critical points of the function defined by f(x, y) = 3xy − x3 − y3.

• To find the critical points, we need to solve the equations

0 = fx(x, y) = 3y − 3x2 = 3(y − x2),

0 = fy(x, y) = 3x− 3y2 = 3(x− y2).

These give y = x2 and also x = y2, so we easily get

x = y2 = x4 =⇒ x4 − x = 0 =⇒ x(x3 − 1) = 0 =⇒ x = 0, 1.

In particular, the only critical points are (0, 0) and (1, 1).

• In order to classify the critical points, we compute the Hessian matrix

H =

[
fxx fxy

fyx fyy

]
=

[−6x 3
3 −6y

]
.

When it comes to the critical point (0, 0), this gives

H =

[
0 3
3 0

]
=⇒ det H = −9 < 0
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so the origin is a saddle point. When it comes to the critical point (1, 1), we have

H =

[−6 3
3 −6

]
=⇒ det H = 36− 9 > 0

and also fxx = −6 < 0, so this critical point is a local maximum.

10. Compute the double integral ∫ 1

0

∫ 1

y

ex2

dx dy.

• To compute the given integral, we switch the order of integration to get

∫ 1

0

∫ 1

y

ex2

dx dy =

∫ 1

0

∫ x

0

ex2

dy dx =

∫ 1

0

xex2

dx.

Using the substitution u = x2, we now get du = 2x dx, and this implies that

∫ 1

0

∫ 1

y

ex2

dx dy =
1

2

∫ 1

0

eu du =

[
eu

2

]1

0

=
e− 1

2
.
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