
MA121, 2007 Exam #2
Solutions

1. Compute each of the following integrals:

∫
3x− 1

x3 − x
dx,

∫
x log x dx.

• To compute the first integral, we factor the denominator and we write

3x− 1

x3 − x
=

3x− 1

x(x + 1)(x− 1)
=

A

x
+

B

x + 1
+

C

x− 1
(∗)

for some constants A, B, C that need to be determined. Clearing denominators gives

3x− 1 = A(x + 1)(x− 1) + Bx(x− 1) + Cx(x + 1)

and we can now look at some suitable choices of x to find

x = 0, x = −1, x = 1 =⇒ −1 = −A, −4 = 2B, 2 = 2C.

This means that A = C = 1 and B = −2. In particular, equation (∗) reduces to

3x− 1

x3 − x
=

1

x
− 2

x + 1
+

1

x− 1

and we may integrate this equation term by term to conclude that

∫
3x− 1

x3 − x
dx = log |x| − 2 log |x + 1|+ log |x− 1|+ C.

• To compute the second integral, we integrate by parts to find that

∫
x log x dx =

∫ (
x2

2

)′
log x dx =

x2 log x

2
−

∫
x2

2
· 1

x
dx

=
x2 log x

2
−

∫
x

2
dx =

x2 log x

2
− x2

4
+ C.

2. Suppose f, g are integrable on [a, b] with f(x) ≤ g(x) for all x ∈ [a, b]. Show that

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

• Let P = {x0, x1, . . . , xn} be a partition of [a, b]. Starting with the inequality

f(x) ≤ g(x) for all x ∈ [xk, xk+1],
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we take the infimum of both sides to get

inf
[xk,xk+1]

f(x) ≤ inf
[xk,xk+1]

g(x).

Multiplying by the positive quantity xk+1 − xk and then adding, we conclude that

n−1∑

k=0

inf
[xk,xk+1]

f(x) · (xk+1 − xk) ≤
n−1∑

k=0

inf
[xk,xk+1]

g(x) · (xk+1 − xk).

Since the last inequality holds for all partitions P by above, we must thus have

S−(f, P ) ≤ S−(g, P )

for all partitions P . Taking the supremum of both sides, we finally deduce that

∫ b

a

f(x) dx = sup
P
{S−(f, P )} ≤ sup

P
{S−(g, P )} =

∫ b

a

g(x) dx.

3. Define a sequence {an} by setting a1 = 1 and

an+1 =
√

3an − 1 for each n ≥ 1.

Show that 1 ≤ an ≤ an+1 ≤ 3 for each n ≥ 1, use this fact to conclude that the sequence
converges and then find its limit.

• Since the first two terms are a1 = 1 and a2 =
√

2, the statement

1 ≤ an ≤ an+1 ≤ 3

does hold when n = 1. Suppose that it holds for some n, in which case

3− 1 ≤ 3an − 1 ≤ 3an+1 − 1 ≤ 9− 1 =⇒
√

2 ≤ an+1 ≤ an+2 ≤
√

8

=⇒ 1 ≤ an+1 ≤ an+2 ≤ 3.

In particular, the statement holds for n+1 as well, so it actually holds for all n ∈ N. This
shows that the given sequence is monotonic and bounded, hence also convergent; denote
its limit by L. Using the definition of the sequence, we then find that

an+1 =
√

3an − 1 =⇒ L =
√

3L− 1 =⇒ L2 − 3L + 1 = 0.

Solving this quadratic equation now gives

L =
3±√32 − 4

2
=

3±√5

2
.

Since 1 ≤ an ≤ 3 for each n ∈ N, however, we must also have 1 ≤ L ≤ 3, hence

L =
3 +

√
5

2
.
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4. Compute each of the following limits:

lim
x→1

x3 − 5x2 + 7x− 3

x3 − 4x2 + 5x− 2
, lim

x→∞
x sin(1/x).

• Since the first limit is a 0/0 limit, we may apply L’Hôpital’s rule to find that

L = lim
x→1

x3 − 5x2 + 7x− 3

x3 − 4x2 + 5x− 2
= lim

x→1

3x2 − 10x + 7

3x2 − 8x + 5
.

Since this is still a 0/0 limit, L’Hôpital’s rule is still applicable and we get

L = lim
x→1

3x2 − 10x + 7

3x2 − 8x + 5
= lim

x→1

6x− 10

6x− 8
=
−4

−2
= 2.

• When it comes to the second limit, we can express it in the form

M = lim
x→∞

x sin(1/x) = lim
x→∞

sin(1/x)

1/x
.

This is now a 0/0 limit, so L’Hôpital’s rule becomes applicable and we get

M = lim
x→∞

cos(1/x) · (1/x)′

(1/x)′
= lim

x→∞
cos(1/x) = cos 0 = 1.

5. Test each of the following series for convergence:

∞∑
n=1

(−1)n−1 e1/n

n
,

∞∑
n=1

log

(
1 +

1

n

)
.

• To test the first series for convergence, we use the alternating series test with

an =
e1/n

n
.

Note that an is certainly non-negative for each n ≥ 1, and that we also have

lim
n→∞

an = lim
n→∞

e1/n

n
= lim

n→∞
e0

n
= lim

n→∞
1

n
= 0.

Moreover, an is decreasing for each n ≥ 1 because

(
e1/n

n

)′
=

e1/n · (−n−2) · n− e1/n

n2
= −e1/n

n2
· (n−1 + 1) < 0

for each n ≥ 1. Thus, the given series converges by the alternating series test.
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• To test the second series for convergence, we use the limit comparison test with

an = log

(
1 +

1

n

)
, bn =

1

n
.

Note that the limit comparison test is, in fact, applicable here because

lim
n→∞

an

bn

= lim
n→∞

n log

(
1 +

1

n

)
= lim

n→∞
log

(
1 +

1

n

)n

= log e = 1.

Since the series
∑∞

n=1 bn is a divergent p-series, the series
∑∞

n=1 an must also diverge.

6. Find the radius of convergence of the power series

f(x) =
∞∑

n=0

(n!)2

(2n)!
· xn.

• To find the radius of convergence, one always uses the ratio test. In our case,

an+1

an

=
(n + 1)!

n!
· (n + 1)!

n!
· (2n)!

(2n + 2)!
· xn+1

xn
=

(n + 1)2 · x
(2n + 1)(2n + 2)

and this implies that

L = lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = lim
n→∞

(n2 + 2n + 1) |x|
4n2 + 6n + 2

=
|x|
4

.

Thus, the power series converges when |x|/4 < 1 and diverges when |x|/4 > 1. In other
words, it converges when |x| < 4 and diverges when |x| > 4. This also means that R = 4.

7. Suppose f is a differentiable function such that f ′(x) = f(x) + ex for all x ∈ R. Show
that there exists some constant C such that f(x) = xex + Cex for all x ∈ R.

• Letting g(x) = f(x)e−x − x for convenience, one easily finds that

g′(x) = f ′(x)e−x − f(x)e−x − 1

= e−x [f ′(x)− f(x)]− 1

= e−xex − 1 = 0.

In particular, g(x) is actually constant, say g(x) = C for all x ∈ R, and this implies

g(x) = C =⇒ f(x)e−x = x + C =⇒ f(x) = xex + Cex.

8. Use the formula for a geometric series to show that

∞∑
n=0

n2xn =
x(1 + x)

(1− x)3
whenever |x| < 1.
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• Since |x| < 1 by assumption, the formula for a geometric series is applicable and so

∞∑
n=0

xn =
1

1− x
= (1− x)−1.

We differentiate both sides of this equation and we multiply by x to get

∞∑
n=0

nxn−1 = (1− x)−2 =⇒
∞∑

n=0

nxn = x(1− x)−2 =
x

(1− x)2
.

Using the quotient rule to differentiate once again, we arrive at

∞∑
n=0

n2xn−1 =
(1− x)2 + 2(1− x) · x

(1− x)4
=

(1− x)(1− x + 2x)

(1− x)4
.

Multiplying by x and simplifying, we may finally conclude that

∞∑
n=0

n2xn =
x(1− x)(1− x + 2x)

(1− x)4
=

x(1 + x)

(1− x)3
.
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