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1. Compute each of the following integrals:

∫
3x− 1

x3 − x
dx,

∫
x log x dx.

2. Suppose f, g are integrable on [a, b] with f(x) ≤ g(x) for all x ∈ [a, b]. Show that

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

3. Define a sequence {an} by setting a1 = 1 and

an+1 =
√

3an − 1 for each n ≥ 1.

Show that 1 ≤ an ≤ an+1 ≤ 3 for each n ≥ 1, use this fact to conclude that the sequence

converges and then find its limit.

4. Compute each of the following limits:

lim
x→1

x3 − 5x2 + 7x− 3

x3 − 4x2 + 5x− 2
, lim

x→∞
x sin(1/x).

5. Test each of the following series for convergence:

∞∑
n=1

(−1)n−1 e1/n

n
,

∞∑
n=1

log

(
1 +

1

n

)
.

6. Find the radius of convergence of the power series

f(x) =
∞∑

n=0

(n!)2

(2n)!
· xn.

7. Suppose f is a differentiable function such that f ′(x) = f(x) + ex for all x ∈ R. Show that

there exists some constant C such that f(x) = xex + Cex for all x ∈ R.

8. Use the formula for a geometric series to show that

∞∑
n=0

n2xn =
x(1 + x)

(1− x)3
whenever |x| < 1.
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