UNIVERSITY OF DUBLIN

XMA1213

TRINITY COLLEGE

FACULTY OF SCIENCE

SCHOOL OF MATHEMATICS

JF Maths, JF TP JF TSM, SF TSM Hilary Term 2008

Course 121

Monday, March 10

Regent House

14:00 - 17:00

Dr. P. Karageorgis

Attempt all questions. All questions are weighted equally. You may use non-programmable calculators, but you may not use log tables. 1. Compute each of the following integrals:

$$\int \frac{3x-1}{x^3-x} \, dx, \qquad \int x \log x \, dx.$$

2. Suppose f, g are integrable on [a, b] with $f(x) \leq g(x)$ for all $x \in [a, b]$. Show that

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx.$$

3. Define a sequence $\{a_n\}$ by setting $a_1 = 1$ and

$$a_{n+1} = \sqrt{3a_n - 1}$$
 for each $n \ge 1$.

Show that $1 \le a_n \le a_{n+1} \le 3$ for each $n \ge 1$, use this fact to conclude that the sequence converges and then find its limit.

4. Compute each of the following limits:

$$\lim_{x \to 1} \frac{x^3 - 5x^2 + 7x - 3}{x^3 - 4x^2 + 5x - 2}, \qquad \lim_{x \to \infty} x \sin(1/x).$$

5. Test each of the following series for convergence:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} e^{1/n}}{n}, \qquad \sum_{n=1}^{\infty} \log\left(1 + \frac{1}{n}\right).$$

6. Find the radius of convergence of the power series

$$f(x) = \sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} \cdot x^n.$$

- 7. Suppose f is a differentiable function such that $f'(x) = f(x) + e^x$ for all $x \in \mathbb{R}$. Show that there exists some constant C such that $f(x) = xe^x + Ce^x$ for all $x \in \mathbb{R}$.
- 8. Use the formula for a geometric series to show that

$$\sum_{n=0}^{\infty}n^2x^n=\frac{x(1+x)}{(1-x)^3}\quad\text{whenever }|x|<1.$$

© UNIVERSITY OF DUBLIN 2008

XMA1213