MA121, 2006 Final exam
Solutions

. Suppose that A is a nonempty subset of R that has an upper bound, and let B be the set
of all upper bounds of A. Show that inf B = sup A.

Since sup A is the least upper bound of A, it is also the least element of B, namely
sup A = min B.
Since B has a minimum, however, it also has an infimum and the two are equal, so

inf B = min B = sup A.

. Let a € R be a given number and let f be the function defined by

[ ar® 42z if ©#£2
f(”“")_{ 20+ 8 ifsz}'

Find the value of a for which f is continuous at y = 2.

To say that f is continuous at y = 2 is to say that

lim f(z) = f(2).

r—2

In our case, the left hand side is equal to

lim f(a:)zlin%(aa:2+2:z:):a-22+2~2:4a—|—4,

x—)2

while the right hand side is equal to f(2) = 2a + 8. In particular, we have

lim f(z) = f(2) <= 4a+4=2a+8 <<= a=2

r—2

. Find the minimum value of f(z) = z* + 423 — 8% + 2 over the whole real line.
The derivative of the given function is
f'(z) = 42® + 122% — 167 = 4o (2® + 32 — 4) = da(x — 1)(z + 4)

and we can determine the sign of f’ using the table below.

T —4 0 1

4z — — + +
x—1 — — — +
r+4 — + + +
f'(z) — + — +
f) | N\ / N /



According to the table, the minimum value of f can now be found by comparing
f(—4)=4"—4-4> —8-4% + 2 = —126, fl)=1+4—-842=—1.
Since the former is smaller and also attained, this means that min f(z) = —126.

. Let a,b,c € R be some fized constants such that § + g + ¢ = 0. Show that
az® +bx+c=0 for somex € (0,1).
As a hint, apply the mean value theorem to a function whose derivative is ax® + bz + c.

Following the hint, let us consider the function

ar®  br?

f(x):T+7+cx.

Then f is differentiable on [0, 1] with f'(z) = az® + bx + ¢ for all z, and we also have

£(0) =0, f(1):§+g+c:o.

Using the mean value theorem, we conclude that some x € (0, 1) exists such that

f)—f0) _0-0_

2 _
-0 —1_0—0 — ax®+bxr+c=0.

f(@) =
. Suppose that f is a function which satisfies the inequality

\f(z)— f()| < |v—y|* forall x,y € R.

Show that f is actually constant.

We need only show that f/'(y) = 0 for all y € R. Using the given inequality, we get
< |x—y| whenever x # y.

Since |z — y| approaches zero as x — y, the quotient above is thus squeezed between two
functions which approach zero as x — y. In view of the Squeeze Law, the quotient itself
must approach zero as x — y. This also implies that f’'(y) = 0, as needed.

. Fvaluate each of the following integrals:

/4x2—15a§+12d /:Eg—x—l-ld
x - dx.
3 — 52?2 + 6 ’ x+1

As a hint for the first integral, you might want to factor the denominator.




To evaluate the first integral, we use partial fractions to write

4x2—15x+12_4x2—15:€+12_/l+ B n C
3 —5224+6x w(r—2)(r—-3) x -2 x-3

for some constants A, B, C that need to be determined. Clearing denominators, we get
42? — 152 +12 = A(x — 2)(x — 3) + Bx(z — 3) + Cz(z — 2)
and we can now look at some suitable choices of = to find that
r=0,2,3 = 12=06A4, —-2=-2B, 3=3C.
This gives A =2 and B = C = 1, so the partial fractions decomposition reads

42 — 15z +12 2 1 1

2 —5124+6x = x—2 x-—3°

Once we now integrate this equation term by term, we get

dx = 2log |z| + log |z — 2| + log |x — 3| + C.

/4952 — 15z + 12
3 — Hx? + 62

For the second integral, we use division of polynomials to write

B-z+1
x+1 x+1°

Integrating this equation term by term, we then easily find that

2 —r4+1 3 22
e S 1|+C.
/ g r= 2+og|x—|— | +

. Test each of the following series for convergence:

= nl > (—1)nt > n?4+2

To test the first series for convergence, we use the ratio test. Since the limit

. Oy . (n+D! (2n)! _ n+1
lim = lim . = lim
n—0oo  (y, n—oo  n! (2n +2)!  n—ooo (2n+1)(2n + 2)

is strictly less than 1, the first series converges by the ratio test.



For the second series, we use the alternating series test with

Note that a, is non-negative for each n > 1 and that a,, is decreasing because

a, =-n"?<0.

Since a,, = 1/n approaches zero as n — 0o, we see that the second series converges.

For the last series, we use the limit comparison test with

n? 42 n? 1
ap = 5 bn:_:_~
n3+n

Note that the limit comparison test is, in fact, applicable here because

. ap, .. n*P+2 n . n?4+2
lim — = lim - — = lim =
n—oo by, n—oo n3 +n 1 n—oo n2 -+ 1

Since the series Y | b, is a divergent p-series, the series Y - a, diverges as well.

. Fvaluate each of the following sums:

S se e
—~ Jn+2’ —~ n!’ — (2n)!
The first sum is related to a geometric series, namely
iQ”“ _z.i(z)"_z. L _6_2
L3tz 9 £=\3) 9 1-2/3 9 3

Relating the second sum to the Taylor series for the exponential function, we get

Zgzzm—l—e:ee—l—e.

n=2 n=0

Finally, the third sum is related to the Taylor series for the cosine function, namely

X (=1)"9gntl © (—1)"32n
Z—( (3”)' :9.221—( (2)n)! =9(cos3 —1).

-{4 4228}

Show that f is integrable on [0, 1].

n=1

. Let f be the function defined by



e Since f(z) =1 at all points except for z = 0, it should be clear that

10.

n—1

SHEPY =) sup f(x) - (whp1 — ax)

k=0 [xkazk+1}
=(r1—mo)+ (g —x1)+ ...+ (tp—Tp 1) =2, — 20 =1
for all partitions P = {xg, z1,...,x,} of the closed interval [0, 1].

Since [xg, 1] is the only subinterval that contains the point = 0, we also have

n—1

ST(fP) =) inf f(x) (zpo — )

k=0 [xk’zlwkl}
=(ro—m)+ (g —x2)+ ...+ (tp —Tp1) =2, — 21 =1 — 271.
Taking the supremum over all possible partitions, we may thus conclude that

sup {5 (£, P)} = sup (=) =1=inf{S*(£, P)}.

0<z1<1

Define a sequence {a,} by setting a; = 2 and

Qpy1 = for each n > 1.

3 —a,
Show that 0 < a,y1 < a, < 2 for each n > 1. Use this fact to conclude that the sequence
converges and then find its limit.

Since the first two terms are a; = 2 and as = 1, the statement
0< An+1 S anp, S 2
does hold when n = 1. Suppose that it holds for some n, in which case

0>—-apy12—a,>2—-2 — 3>3—ap1>3—a,>1
— 1/3<an+2§an+1§1.
Thus, the statement holds for n 4+ 1 as well, so it must actually hold for all n € N. This

shows that the given sequence is monotonic and bounded, hence also convergent; denote
its limit by L. Using the definition of the sequence, we then find that
1 1

— L=—— = L[*-3L+1=0.
3 —a, 3—L +
Solving this quadratic equation now gives
3+v9—-4 3+45

2 2
Since 0 < a,, < 2 for each n € N, however, we must also have 0 < L < 2, so
~3-6
-

Apy1 =

L —

L




