
MA121, 2006 Final exam
Solutions

1. Suppose that A is a nonempty subset of R that has an upper bound, and let B be the set
of all upper bounds of A. Show that inf B = sup A.

• Since sup A is the least upper bound of A, it is also the least element of B, namely

sup A = min B.

Since B has a minimum, however, it also has an infimum and the two are equal, so

inf B = min B = sup A.

2. Let a ∈ R be a given number and let f be the function defined by

f(x) =

{
ax2 + 2x if x 6= 2
2a + 8 if x = 2

}
.

Find the value of a for which f is continuous at y = 2.

• To say that f is continuous at y = 2 is to say that

lim
x→2

f(x) = f(2).

In our case, the left hand side is equal to

lim
x→2

f(x) = lim
x→2

(ax2 + 2x) = a · 22 + 2 · 2 = 4a + 4,

while the right hand side is equal to f(2) = 2a + 8. In particular, we have

lim
x→2

f(x) = f(2) ⇐⇒ 4a + 4 = 2a + 8 ⇐⇒ a = 2.

3. Find the minimum value of f(x) = x4 + 4x3 − 8x2 + 2 over the whole real line.

• The derivative of the given function is

f ′(x) = 4x3 + 12x2 − 16x = 4x(x2 + 3x− 4) = 4x(x− 1)(x + 4)

and we can determine the sign of f ′ using the table below.

x −4 0 1
4x − − + +

x− 1 − − − +
x + 4 − + + +
f ′(x) − + − +
f(x) ↘ ↗ ↘ ↗



According to the table, the minimum value of f can now be found by comparing

f(−4) = 44 − 4 · 43 − 8 · 42 + 2 = −126, f(1) = 1 + 4− 8 + 2 = −1.

Since the former is smaller and also attained, this means that min f(x) = −126.

4. Let a, b, c ∈ R be some fixed constants such that a
3

+ b
2

+ c = 0. Show that

ax2 + bx + c = 0 for some x ∈ (0, 1).

As a hint, apply the mean value theorem to a function whose derivative is ax2 + bx + c.

• Following the hint, let us consider the function

f(x) =
ax3

3
+

bx2

2
+ cx.

Then f is differentiable on [0, 1] with f ′(x) = ax2 + bx + c for all x, and we also have

f(0) = 0, f(1) =
a

3
+

b

2
+ c = 0.

Using the mean value theorem, we conclude that some x ∈ (0, 1) exists such that

f ′(x) =
f(1)− f(0)

1− 0
=

0− 0

1− 0
= 0 =⇒ ax2 + bx + c = 0.

5. Suppose that f is a function which satisfies the inequality

|f(x)− f(y)| ≤ |x− y|2 for all x, y ∈ R.

Show that f is actually constant.

• We need only show that f ′(y) = 0 for all y ∈ R. Using the given inequality, we get

0 ≤ |f(x)− f(y)|
|x− y| ≤ |x− y| whenever x 6= y.

Since |x− y| approaches zero as x → y, the quotient above is thus squeezed between two
functions which approach zero as x → y. In view of the Squeeze Law, the quotient itself
must approach zero as x → y. This also implies that f ′(y) = 0, as needed.

6. Evaluate each of the following integrals:

∫
4x2 − 15x + 12

x3 − 5x2 + 6x
dx,

∫
x3 − x + 1

x + 1
dx.

As a hint for the first integral, you might want to factor the denominator.
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• To evaluate the first integral, we use partial fractions to write

4x2 − 15x + 12

x3 − 5x2 + 6x
=

4x2 − 15x + 12

x(x− 2)(x− 3)
=

A

x
+

B

x− 2
+

C

x− 3

for some constants A,B,C that need to be determined. Clearing denominators, we get

4x2 − 15x + 12 = A(x− 2)(x− 3) + Bx(x− 3) + Cx(x− 2)

and we can now look at some suitable choices of x to find that

x = 0, 2, 3 =⇒ 12 = 6A, −2 = −2B, 3 = 3C.

This gives A = 2 and B = C = 1, so the partial fractions decomposition reads

4x2 − 15x + 12

x3 − 5x2 + 6x
=

2

x
+

1

x− 2
+

1

x− 3
.

Once we now integrate this equation term by term, we get

∫
4x2 − 15x + 12

x3 − 5x2 + 6x
dx = 2 log |x|+ log |x− 2|+ log |x− 3|+ C.

• For the second integral, we use division of polynomials to write

x3 − x + 1

x + 1
= x2 − x +

1

x + 1
.

Integrating this equation term by term, we then easily find that

∫
x3 − x + 1

x + 1
dx =

x3

3
− x2

2
+ log |x + 1|+ C.

7. Test each of the following series for convergence:

∞∑
n=0

n!

(2n)!
,

∞∑
n=1

(−1)n−1

n
,

∞∑
n=1

n2 + 2

n3 + n
.

• To test the first series for convergence, we use the ratio test. Since the limit

lim
n→∞

an+1

an

= lim
n→∞

(n + 1)!

n!
· (2n)!

(2n + 2)!
= lim

n→∞
n + 1

(2n + 1)(2n + 2)
= 0

is strictly less than 1, the first series converges by the ratio test.
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• For the second series, we use the alternating series test with

an =
1

n
= n−1.

Note that an is non-negative for each n ≥ 1 and that an is decreasing because

a′n = −n−2 < 0.

Since an = 1/n approaches zero as n →∞, we see that the second series converges.

• For the last series, we use the limit comparison test with

an =
n2 + 2

n3 + n
, bn =

n2

n3
=

1

n
.

Note that the limit comparison test is, in fact, applicable here because

lim
n→∞

an

bn

= lim
n→∞

n2 + 2

n3 + n
· n

1
= lim

n→∞
n2 + 2

n2 + 1
= 1.

Since the series
∑∞

n=1 bn is a divergent p-series, the series
∑∞

n=1 an diverges as well.

8. Evaluate each of the following sums:

∞∑
n=0

2n+1

3n+2
,

∞∑
n=2

en

n!
,

∞∑
n=1

(−1)n 9n+1

(2n)!
.

• The first sum is related to a geometric series, namely

∞∑
n=0

2n+1

3n+2
=

2

9
·
∞∑

n=0

(
2

3

)n

=
2

9
· 1

1− 2/3
=

6

9
=

2

3
.

• Relating the second sum to the Taylor series for the exponential function, we get

∞∑
n=2

en

n!
=

∞∑
n=0

en

n!
− 1− e = ee − 1− e.

• Finally, the third sum is related to the Taylor series for the cosine function, namely

∞∑
n=1

(−1)n 9n+1

(2n)!
= 9 ·

∞∑
n=1

(−1)n 32n

(2n)!
= 9(cos 3− 1).

9. Let f be the function defined by

f(x) =

{
1 if x 6= 0
0 if x = 0

}
.

Show that f is integrable on [0, 1].
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• Since f(x) = 1 at all points except for x = 0, it should be clear that

S+(f, P ) =
n−1∑

k=0

sup
[xk,xk+1]

f(x) · (xk+1 − xk)

= (x1 − x0) + (x2 − x1) + . . . + (xn − xn−1) = xn − x0 = 1

for all partitions P = {x0, x1, . . . , xn} of the closed interval [0, 1].

• Since [x0, x1] is the only subinterval that contains the point x = 0, we also have

S−(f, P ) =
n−1∑

k=0

inf
[xk,xk+1]

f(x) · (xk+1 − xk)

= (x2 − x1) + (x3 − x2) + . . . + (xn − xn−1) = xn − x1 = 1− x1.

Taking the supremum over all possible partitions, we may thus conclude that

sup
P
{S−(f, P )} = sup

0<x1<1
(1− x1) = 1 = inf

P
{S+(f, P )}.

10. Define a sequence {an} by setting a1 = 2 and

an+1 =
1

3− an

for each n ≥ 1.

Show that 0 < an+1 ≤ an ≤ 2 for each n ≥ 1. Use this fact to conclude that the sequence
converges and then find its limit.

• Since the first two terms are a1 = 2 and a2 = 1, the statement

0 < an+1 ≤ an ≤ 2

does hold when n = 1. Suppose that it holds for some n, in which case

0 > −an+1 ≥ −an ≥ −2 =⇒ 3 > 3− an+1 ≥ 3− an ≥ 1

=⇒ 1/3 < an+2 ≤ an+1 ≤ 1.

Thus, the statement holds for n + 1 as well, so it must actually hold for all n ∈ N. This
shows that the given sequence is monotonic and bounded, hence also convergent; denote
its limit by L. Using the definition of the sequence, we then find that

an+1 =
1

3− an

=⇒ L =
1

3− L
=⇒ L2 − 3L + 1 = 0.

Solving this quadratic equation now gives

L =
3±√9− 4

2
=

3±√5

2
.

Since 0 < an ≤ 2 for each n ∈ N, however, we must also have 0 ≤ L ≤ 2, so

L =
3−√5

2
.
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