
MA121, 2006 Exam #2
Solutions

1. Find the minimum value of f(x) = x4 + 4x3 − 8x2 + 2 over the closed interval [0, 2].

Since we are dealing with a closed interval, it suffices to check the endpoints, the points
at which f ′ does not exist and the points at which f ′ is equal to zero. In our case,

f ′(x) = 4x3 + 12x2 − 16x = 4x(x2 + 3x− 4) = 4x(x− 1)(x + 4)

for all x ∈ R, so the only points at which the minimum value may occur are

x = 0, x = 2, x = 1, x = −4.

We exclude the rightmost point, which fails to lie in [0, 2], and we now compute

f(0) = 2, f(2) = 16 + 32− 32 + 2 = 18, f(1) = 1 + 4− 8 + 2 = −1.

Based on these observations, we deduce that the minimum value is f(1) = −1.

2. Determine the minimum and maximum values attained by f(x) = 2x+1
x2+2

.

According to the quotient rule, the derivative of the given function is

f ′(x) =
2(x2 + 2)− 2x · (2x + 1)

(x2 + 2)2
=

2x2 + 4− 4x2 − 2x

(x2 + 2)2

=
−2(x2 + x− 2)

(x2 + 2)2
=
−2(x + 2)(x− 1)

(x2 + 2)2
.

Using this fact, one can easily determine the sign of f ′ by means of a table.

x −2 1
−2(x + 2) + − −

x− 1 − − +
f ′(x) − + −
f(x) ↘ ↗ ↘

To find the minimum value attained, we need to compare

f(−2) =
−4 + 1

4 + 2
= −1

2
, lim

x→+∞
2x + 1

x2 + 2
= lim

x→+∞
2/x + 1/x2

1 + 2/x2
=

0 + 0

1 + 0
= 0.

Since the former is smaller and also attained, we get min f(x) = f(−2) = −1/2. To find
the maximum value attained, we need to compare

f(1) =
2 + 1

1 + 2
= 1, lim

x→−∞
2x + 1

x2 + 2
= lim

x→−∞
2/x + 1/x2

1 + 2/x2
=

0 + 0

1 + 0
= 0.

Since the former is larger and also attained, we get max f(x) = f(1) = 1.

1



3. Compute the following limit:

lim
x→1

x3 + 4x2 + x− 6

x3 − x2 − 4x + 4
.

• Setting x = 1 gives rise to a 0/0 limit, so we can apply L’Hôpital’s rule to get

lim
x→1

x3 + 4x2 + x− 6

x3 − x2 − 4x + 4
= lim

x→1

3x2 + 8x + 1

3x2 − 2x− 4
=

3 + 8 + 1

3− 2− 4
=

12

−3
= −4.

4. Evaluate each of the following integrals:

∫
4x2 + x + 2

x3 + x
dx,

∫
x · ex dx.

• To compute the first integral, we factor the denominator and we write

4x2 + x + 2

x(x2 + 1)
=

A

x
+

Bx + C

x2 + 1
(∗)

for some constants A, B, C that need to be determined. Clearing denominators gives

4x2 + x + 2 = A(x2 + 1) + Bx2 + Cx

and we can now look at some suitable choices of x to find

x = 0 =⇒ 2 = A

x = 1 =⇒ 7 = 2A + B + C = 4 + B + C

x = −1 =⇒ 5 = 2A + B − C = 4 + B − C.

Adding the last two equations, we get 12 = 8 + 2B, and this implies

2B = 12− 8 = 4 =⇒ B = 2 =⇒ C = 7− 4−B = 1.

Once we now return to equation (∗), we may conclude that

4x2 + x + 2

x(x2 + 1)
=

2

x
+

2x

x2 + 1
+

1

x2 + 1
.

Integrating term by term, we may thus conclude that

∫
4x2 + x + 2

x(x2 + 1)
dx = 2 log |x|+ log(x2 + 1) + arctan x + C.

• To compute the second integral, we integrate by parts to find that
∫

xex dx =

∫
x (ex)′ dx = xex −

∫
ex dx = xex − ex + C.
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5. Suppose that f is a differentiable function such that

f ′(x) = cos x · f(x) for all x ∈ R.

Show that there exists some constant C such that f(x) = Cesin x for all x ∈ R.

• Setting g(x) = f(x) · e− sin x for convenience, we use the product rule to get

g′(x) = f ′(x) · e− sin x + f(x) · e− sin x · (− sin x)′

= cos x · f(x) · e− sin x − f(x) · e− sin x · cos x = 0.

This shows that g(x) is actually constant, say g(x) = C, and it also implies that

g(x) = C =⇒ f(x) · e− sin x = C =⇒ f(x) = Cesin x.

6. Assuming that f is continuous on [a, b] with
∫ b

a
f(t) dt = 0, show that

f(c) = 0 for some c ∈ (a, b).

As a hint, apply the mean value theorem to the function F (x) =
∫ x

a
f(t) dt.

• According to the mean value theorem, there exists some c ∈ (a, b) such that

F ′(c) =
F (b)− F (a)

b− a
.

In addition, we have F ′(x) = f(x) for all x, and we also have

F (a) =

∫ a

a

f(t) dt = 0, F (b) =

∫ b

a

f(t) dt = 0.

Once we now combine all these facts, we may conclude that

f(c) = F ′(c) =
F (b)− F (a)

b− a
= 0.

7. Let f be a non-negative function which is integrable on [0, 1] with f(x) = 0 for all x ∈ Q.

Show that
∫ 1

0
f(x) dx = 0.

• Suppose that P = {x0, x1, . . . , xn} is a partition of [0, 1]. Then we must clearly have

inf
[xk,xk+1]

f(x) = 0 for each 0 ≤ k ≤ n− 1

because f is non-negative and since every subinterval contains a rational. Thus,

S−(f, P ) =
n−1∑

k=0

inf
[xk,xk+1]

f(x) · (xk+1 − xk) = 0

as well. Taking the supremum of both sides, we conclude that
∫ 1

0

f(x) dx = sup
P
{S−(f, P )} = sup

P
{0} = 0.
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8. Let f be the function defined by

f(x) =

{
x3 · sin(1/x) if x 6= 0

0 if x = 0

}
.

Using the limit definition of a derivative, show that f ′(0) = 0. You may use the fact that

−1 ≤ sin(1/x) ≤ 1 for all x 6= 0.

• According to the limit definition of the derivative, we have

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

f(x)

x
.

Since x 6= 0 whenever x → 0, this actually gives

f ′(0) = lim
x→0

x3 sin(1/x)

x
= lim

x→0
x2 sin(1/x).

To compute the rightmost limit, we shall now use the fact that

−1 ≤ sin(1/x) ≤ 1 for all x 6= 0.

Multiplying by the positive quantity x2 preserves the inequality, so we get

−x2 ≤ x2 sin(1/x) ≤ x2 for all x 6= 0.

Once we now note that

lim
x→0

(−x2) = 0 and lim
x→0

x2 = 0,

we may apply the Squeeze Law to finally conclude that

f ′(0) = lim
x→0

x2 sin(1/x) = 0.
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