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1. Find the minimum value of f(x) = x4 + 4x3 − 8x2 + 2 over the closed interval [0, 2].

2. Determine the minimum and maximum values attained by f(x) = 2x+1
x2+2

.

3. Compute the following limit:

lim
x→1

x3 + 4x2 + x− 6

x3 − x2 − 4x + 4
.

4. Evaluate each of the following integrals:

∫
4x2 + x + 2

x3 + x
dx,

∫
x · ex dx.

5. Suppose that f is a differentiable function such that

f ′(x) = cos x · f(x) for all x ∈ R.

Show that there exists some constant C such that f(x) = Cesin x for all x ∈ R.

6. Assuming that f is continuous on [a, b] with
∫ b

a
f(t) dt = 0, show that

f(c) = 0 for some c ∈ (a, b).

As a hint, apply the mean value theorem to the function F (x) =
∫ x

a
f(t) dt.

7. Let f be a non-negative function which is integrable on [0, 1] with f(x) = 0 for all x ∈ Q.

Show that
∫ 1

0
f(x) dx = 0.

8. Let f be the function defined by

f(x) =





x3 · sin(1/x) if x 6= 0

0 if x = 0



 .

Using the limit definition of a derivative, show that f ′(0) = 0. You may use the fact that

−1 ≤ sin(1/x) ≤ 1 for all x 6= 0.
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