
Linear algebra I
Homework #1 solutions

1. Show that the diagonals of a square are orthogonal to one another.

Suppose that the side length of the square is x and that the vertices are located at

A(0, 0), B(0, x), C(x, x), D(x, 0).

Then the two diagonals of the square are orthogonal to one another because

−→
AC =

[
x
x

]
,

−−→
BD =

[
x
−x

]
=⇒

−→
AC ·

−−→
BD = x2 − x2 = 0.

2. Find the equation of the plane that contains A(1, 3, 4), B(2, 2, 3) and C(4, 0, 2).

The normal vector of the plane is given by the cross product

−→
AB ×

−→
AC =

 1
−1
−1

×
 3
−3
−2

 =

−1
−1

0

 .
Since the plane contains the point A(1, 3, 4), its equation is then

−(x− 1)− (y − 3) + 0(z − 4) = 0 =⇒ x+ y = 4.

3. Find the equation of the plane that contains both the point (1, 2, 1) and the line

x = 2− t, y = 1 + 3t, z = 5 + 4t.

Let P (1, 2, 1) be the given point and pick any two points on the line, say

Q(2, 1, 5) and R(1, 4, 9),

obtained for t = 0 and t = 1, respectively. The normal vector of the plane is then

−→
PQ×

−→
PR =

 1
−1

4

×
0

2
8

 =

−16
−8

2


and the plane contains the point P (1, 2, 1), so its equation is

−16(x− 1)− 8(y − 2) + 2(z − 1) = 0 =⇒ 8x+ 4y − z = 15.



4. Consider the line through (1, 2, 3) which is perpendicular to the plane

2x+ 3y + 4z = 6.

At which point does this line intersect the plane 3x− 2y + z = 10?

The line passes through (1, 2, 3) with direction v =

2
3
4

, so its equation is

x = 1 + 2t, y = 2 + 3t, z = 3 + 4t.

The point at which the line intersects the plane is the point that satisfies both the equation
of the line and that of the plane. This gives

3x− 2y + z = 10 =⇒ 3(1 + 2t)− 2(2 + 3t) + (3 + 4t) = 10

=⇒ 4t = 8,

so t = 2 and the point of intersection is the point

(x, y, z) = (1 + 2t, 2 + 3t, 3 + 4t) = (5, 8, 11).



Linear algebra I
Homework #2 solutions

1. Find the distance between the point A(1, 2, 4) and the plane 2x+ y + 2z = 6.

Consider the line through A which is perpendicular to the plane. The direction of this
line is the direction of the normal vector, so the equation of the line is

x = 1 + 2t, y = 2 + t, z = 4 + 2t.

Let P be the point at which the line intersects the plane. At that point, both the equation
of the line and that of the plane must hold, so we must have

6 = 2x+ y + 2z = 2(1 + 2t) + 2 + t+ 2(4 + 2t) = 9t+ 12.

This gives t = −6
9

= −2
3
, while the point P has coordinates

(x, y, z) = (1 + 2t, 2 + t, 4 + 2t).

Since the point A has coordinates (1, 2, 4), the distance between them is∣∣∣∣∣∣−→AP ∣∣∣∣∣∣ =
√

(2t)2 + t2 + (2t)2 =
√

9t2 = 2.

2. Find a quadratic polynomial, say f(x) = ax2 + bx+ c, such that

f(1) = 6, f(2) = 13, f(3) = 26.

The given conditions hold if and only if

a+ b+ c = 6, 4a+ 2b+ c = 13, 9a+ 3b+ c = 26.

Once we now use row reduction to solve this linear system, we find that1 1 1 6
4 2 1 13
9 3 1 26

 −→
1 0 0 3

0 1 0 −2
0 0 1 5

 .
This gives the unique solution (a, b, c) = (3,−2, 5) and so f(x) = 3x2 − 2x+ 5.



3. Solve the system of linear equations
2x− 2y + 2z = 16

3x− 4y + 2z = 14

2x+ 3y + 2z = 31

 .

Using row reduction of the associated matrix, we get2 −2 2 16
3 −4 2 14
2 3 2 31

 −→
1 −1 1 8

3 −4 2 14
2 3 2 31

 −→
1 −1 1 8

0 −1 −1 −10
0 5 0 15


and this can be further reduced to give1 0 2 18

0 1 1 10
0 0 −5 −35

 −→
1 0 2 18

0 1 1 10
0 0 1 7

 −→
1 0 0 4

0 1 0 3
0 0 1 7

 .
In particular, the system has a unique solution which is given by (x, y, z) = (4, 3, 7).

4. Solve the system of linear equations
x1 + 2x2 + 4x3 + 5x4 + 6x5 = 2

2x1 + x2 + 5x3 + 7x4 + 9x5 = 7

2x1 + 2x2 + 6x3 + 8x4 + 9x5 = 3

x1 + 5x2 + 7x3 + 2x4 + 3x5 = 5

 .

In this case, row reduction leads to the reduced row echelon form
1 2 4 5 6 2
2 1 5 7 9 7
2 2 6 8 9 3
1 5 7 2 3 5

 −→


1 0 2 0 0 4
0 1 1 0 0 0
0 0 0 1 0 −4
0 0 0 0 1 3

 .
Note that the corresponding system of equations reads

x1 + 2x3 = 4, x2 + x3 = 0, x4 = −4, x5 = 3.

Thus, x3 is the only free variable and the solution of the system is

x1 = 4− 2x3, x2 = −x3, x4 = −4, x5 = 3.



Linear algebra I
Homework #3 solutions

1. Express w as a linear combination of u1, u2 and u3 in the case that

u1 =


1
1
0
2

 , u2 =


4
0
2
1

 , u3 =


1
2
1
3

 , w =


2
1
5
0

 .
Let A denote the matrix whose columns are the vectors ui. In order to express w as a

linear combination of these vectors, we have to solve the system Ax = w. Since
1 4 1 2
1 0 2 1
0 2 1 5
2 1 3 0

 −→


1 0 0 −5
0 1 0 1
0 0 1 3
0 0 0 0

 ,
the unique solution is (x1, x2, x3) = (−5, 1, 3) and this means that w = −5u1 + u2 + 3u3.

2. Show that a system of m linear equations in n > m unknowns cannot have a unique
solution. Hint: count the pivots and the rows of the reduced row echelon form.

If the system has a unique solution, then every variable is associated with a pivot, so the
reduced row echelon form contains n pivots. These appear in m rows and there is at most
one pivot per row, so the total number of pivots is at most m < n, a contradiction.

3. The trace of an n× n matrix A is the sum of its diagonal entries, namely

trA = A11 + A22 + . . .+ Ann =
n∑

k=1

Akk.

Show that tr(AB) = tr(BA) for all n× n matrices A,B.

Using the definition of matrix multiplication, we get

tr(AB) =
n∑

k=1

(AB)kk =
n∑

k=1

n∑
m=1

AkmBmk

and then a similar computation gives

tr(BA) =
n∑

m=1

(BA)mm =
n∑

m=1

n∑
k=1

BmkAkm = tr(AB).



4. Suppose A,B are n× n matrices and A has a row of zeros. Show that AB has a row
of zeros as well and conclude that A is not invertible.

Suppose that the ith row of A is a row of zeros. Then we have

(AB)ij = Ai1B1j + Ai2B2j + . . .+ AinBnj = 0

for each j, so the ith row of AB is zero as well. Since the identity matrix does not have a
row of zeros, we conclude that AB 6= In and that A is not invertible.



Linear algebra I
Homework #4 solutions

1. Compute the determinant of the matrix

A =

1 1 2
1 a 2
2 1 a

 .
Using row reduction to compute the determinant, one finds that

detA = det

1 1 2
0 a− 1 0
0 −1 a− 4

 = (a− 1) · det

1 1 2
0 1 0
0 −1 a− 4


= (a− 1) · det

1 0 2
0 1 0
0 0 a− 4

 = (a− 1)(a− 4) · det

1 0 2
0 1 0
0 0 1


= (a− 1)(a− 4).

2. Find the inverse of the matrix

A =

1 2 3
3 2 2
2 1 1

 .
To find the inverse of A, one can use row reduction to get 1 2 3 1 0 0

3 2 2 0 1 0
2 1 1 0 0 1

 −→
 1 0 0 0 −1 2

0 1 0 −1 5 −7
0 0 1 1 −3 4

 .
In view of this computation, we may conclude that

A−1 =

 0 −1 2
−1 5 −7

1 −3 4

 .



3. Suppose A is a 3× 3 matrix whose third row is the sum of the first two rows. Show
that A is not invertible and find a vector b such that Ax = b has no solutions.

Subtracting the first two rows from the last row, one finds that

A =

 α1 α2 α3

β1 β2 β3
α1 + β1 α2 + β2 α3 + β3

 −→
α1 α2 α3

β1 β2 β3
0 0 0

 .
In particular, the reduced row echelon form of A has a row of zeros, so A is not invertible.
This proves the first part; to prove the second part, we consider the equations

α1x1 + α2x2 + α3x3 = b1
β1x1 + β2x2 + β3x3 = b2
γ1x1 + γ2x2 + γ3x3 = b3

 ,

where γi = αi + βi for each i. Adding the first two equations gives

b1 + b2 = (α1 + β1)x1 + (α2 + β2)x2 + (α3 + β3)x3 = γ1x1 + γ2x2 + γ3x3

and this contradicts the third equation, unless b1 + b2 = b3. Thus, the system Ax = b has
no solutions whenever the entries of the vector b are such that b1 + b2 6= b3.

4. Let An denote the n × n matrix whose diagonal entries are equal to 3 and all other
entries are equal to 1. Show that An is invertible for each n ≥ 1.

First, we add the last n− 1 rows to the first row and divide by n+ 2 to get

An =


3 1 · · · 1
1 3 · · · 1
...

...
. . .

...
1 1 · · · 3

 −→

n+ 2 n+ 2 · · · n+ 2

1 3 · · · 1
...

...
. . .

...
1 1 · · · 3

 −→


1 1 · · · 1
1 3 · · · 1
...

...
. . .

...
1 1 · · · 3

 .
Next, we subtract the first row from every other row to arrive at

An −→


1 1 · · · 1
1 3 · · · 1
...

...
. . .

...
1 1 · · · 3

 −→


1 1 · · · 1
2

. . .

2

 .
Dividing the last n − 1 rows by 2, we can then easily clear the entries above the diagonal.
Thus, the reduced row echelon form of An is the identity matrix, so An is invertible.



Linear algebra I
Homework #5 solutions

1. Compute detA using (a) expansion by minors and (b) row reduction:

A =

1 1 a
1 2 1
2 a 2

 .
(a) Using expansion by minors on the first column, we get

detA = det

[
2 1
a 2

]
− det

[
1 a
a 2

]
+ 2 det

[
1 a
2 1

]
= (4− a)− (2− a2) + 2(1− 2a) = a2 − 5a+ 4.

(b) Using row reduction, one similarly finds that

detA = det

1 1 a
0 1 1− a
0 a− 2 2(1− a)

 = det

1 0 2a− 1
0 1 1− a
0 0 (4− a)(1− a)


= (4− a)(1− a) · det

1 0 2a− 1
0 1 1− a
0 0 1

 = a2 − 5a+ 4.

2. Compute the adjoint and the inverse of the matrix

A =

1 1 3
1 2 1
2 2 5

 .
The cofactors of the given matrix are

C11 = det

[
2 1
2 5

]
= 8, C12 = − det

[
1 1
2 5

]
= −3, C13 = det

[
1 2
2 2

]
= −2,

C21 = − det

[
1 3
2 5

]
= 1, C22 = det

[
1 3
2 5

]
= −1, C23 = − det

[
1 1
2 2

]
= 0,

C31 = det

[
1 3
2 1

]
= −5, C32 = − det

[
1 3
1 1

]
= 2, C33 = det

[
1 1
1 2

]
= 1.



This means that the adjoint of A is

adjA =

 8 −3 −2
1 −1 0
−5 2 1

t

=

 8 1 −5
−3 −1 2
−2 0 1

 .
On the other hand, one can easily compute the determinant

detA = det

1 1 3
1 2 1
2 2 5

 = det

1 1 3
0 1 −2
0 0 −1

 = −1,

so the inverse of the given matrix is

A−1 = − adjA =

−8 −1 5
3 1 −2
2 0 −1

 .
3. Suppose A is an invertible n× n matrix. Express det(adjA) in terms of detA.

Using the identity A · adjA = (detA)In, we get

det(A · adjA) = (detA)n =⇒ (detA) · det(adjA) = (detA)n.

Since A is invertible, however, detA 6= 0 and this implies det(adjA) = (detA)n−1.

4. Suppose A is a lower triangular matrix whose diagonal entries are all nonzero. Show
that A is invertible and that its inverse is lower triangular.

Since A is lower triangular, its determinant is the product of its diagonal entries and
those are all nonzero. Thus, the determinant of A is nonzero and A is invertible.

There are essentially two ways to show that the inverse is lower triangular. First of all,
one can try to compute the inverse using row reduction on the augmented matrix

[A|In] =


a11 1
a21 a22 1
...

...
. . . . . .

an1 an2 · · · ann 1

 .
In this case, we have to divide the first row by a11, clear all entries below the pivot and then
proceed in the same way. These operations only affect the entries below the diagonal, so the
lower triangular matrix on the right remains lower triangular at each step. As this matrix
will eventually become the inverse of A, the inverse of A is lower triangular as well.



Linear algebra I
Homework #6 solutions

1. Suppose that P is an n× n permutation matrix. Show that PP t = In.

We compute the (i, j)th entry of PP t, which is given by

(PP t)ij =
n∑

k=1

Pik(P t)kj =
n∑

k=1

PikPjk.

When i 6= j, each summand is zero because both the ith row and the jth row contain a
single nonzero entry, but those occur in different columns. When i = j, on the other hand,
the sum is equal to 1 for similar reasons. This implies that PP t = In.

2. The determinant of a 9× 9 matrix A contains the terms

a18a29a37a41a52a63a76a84a95, a13a28a36a49a52a61a77a85a94.

What is the coefficient of each of these terms?

The coefficient of the first term is

sign

(
1 2 3 4 5 6 7 8 9
8 9 7 1 2 3 6 4 5

)
= sign (184)(295)(376) = (−1)2+2+2 = 1.

The coefficient of the second term is

sign

(
1 2 3 4 5 6 7 8 9
3 8 6 9 2 1 7 5 4

)
= sign (136)(285)(49) = (−1)2+2+1 = −1.

3. Determine both the null space and the column space of the matrix

A =

1 4 6 1 6
1 2 4 1 4
2 1 5 1 4

 .
The reduced row echelon form of A is1 0 2 0 1

0 1 1 0 1
0 0 0 1 1

 .
Thus, the null space and the column space of A are

N (A) = Span




−2
−1

1
0
0

 ,

−1
−1

0
−1

1


 , C(A) = Span


1

1
2

 ,
4

2
1

 ,
1

1
1

 .



4. Suppose that A is a square matrix whose column space is equal to its null space.
Show that A2 must be the zero matrix.

Since Aej is the jth column of A, it belongs to the column space of A, hence also to the
null space. This means that A(Aej) = 0 for all j and thus A2ej = 0 for all j. In particular,
every column of A2 must be zero and so A2 is the zero matrix.



Linear algebra I
Homework #7 solutions

1. Suppose that the vectors v1,v2, . . . ,vk form a complete set in Rn and that they are
linearly independent. Show that k = n and that the matrix whose columns are these
vectors is invertible.

According to the theorems we proved in class, one needs to have k ≥ n for the vectors
to form a complete set and k ≤ n for the vectors to be linearly independent. This proves
the first part. To prove the second part, let A be the matrix whose columns are the given
vectors. The reduced row echelon form of A must have a pivot in each row and column, so
the reduced row echelon form is the identity matrix and A is invertible.

2. Is the matrix A a linear combination of the other three matrices? Explain.

A =

[
4 9
8 5

]
, B1 =

[
1 2
1 1

]
, B2 =

[
1 3
2 1

]
, B3 =

[
1 1
3 2

]
.

We try to find coefficients x1, x2, x3 such that x1B1 + x2B2 + x3B3 = A, namely[
x1 + x2 + x3 2x1 + 3x2 + x3
x1 + 2x2 + 3x3 x1 + x2 + 2x3

]
=

[
4 9
8 5

]
.

This leads to the system of equations
x1 + x2 + x3 = 4

2x1 + 3x2 + x3 = 9

x1 + 2x2 + 3x3 = 8

x1 + x2 + 2x3 = 5


and we can use row reduction to get

1 1 1 4
2 3 1 9
1 2 3 8
1 1 2 5

 −→


1 0 0 1
0 1 0 2
0 0 1 1
0 0 0 0

 .
Thus, the system has the unique solution (x1, x2, x3) = (1, 2, 1) and so A = B1 + 2B2 +B3.



3. Show that the following matrices are linearly independent in M22.

A1 =

[
1 0
0 1

]
, A2 =

[
1 0
1 1

]
, A3 =

[
1 1
1 0

]
, A4 =

[
0 1
1 0

]
.

Suppose that some linear combination of these matrices gives the zero matrix, say

x1A1 + x2A2 + x3A3 + x4A4 = 0

for some coefficients x1, x2, x3, x4. Expanding the left hand side, we then get[
x1 + x2 + x3 x3 + x4
x2 + x3 + x4 x1 + x2

]
=

[
0 0
0 0

]
and this leads to the system of equations

x1 + x2 + x3 = 0 = x1 + x2, x3 + x4 = 0 = x2 + x3 + x4.

Based on the leftmost equations, we must have x3 = 0. Based on the rightmost equations,
we must also have x2 = 0. It now easily follows that x1 and x4 are zero as well.

4. Suppose u, v, w are linearly independent vectors of a vector space V . Show that the
vectors u, u + v, u + v + w are linearly independent as well.

Suppose that some linear combination of these vectors is zero, say

xu + y(u + v) + z(u + v + w) = 0 =⇒ (x+ y + z)u + (y + z)v + zw = 0.

Since u, v, w are linearly independent by assumption, this actually implies

x+ y + z = y + z = z = 0 =⇒ x = y = z = 0.



Linear algebra I
Homework #8 solutions

1. Let U be the set of all polynomials f ∈ P3 such that f(0) = f(1). Show that U is a
subspace of P3 and find a basis for it.

By assumption, U consists of all polynomials f(x) = ax3 + bx2 + cx+ d such that

f(0) = f(1) ⇐⇒ d = a+ b+ c+ d ⇐⇒ c = −a− b.

In other words, U consists of all polynomials of the form

f(x) = ax3 + bx2 − (a+ b)x+ d = a(x3 − x) + b(x2 − x) + d

so U = Span{x3 − x, x2 − x, 1}. Since U is the span of three polynomials, it is certainly a
subspace. To show that these polynomials form a basis, suppose that

a(x3 − x) + b(x2 − x) + d = 0

for some scalars a, b, d. Comparing the coefficients of x3, x2, 1 on both sides, it is then easy
to see that a = b = d = 0. Thus, the three polynomials are also linearly independent.

2. Show that v1,v2,v3 form a basis of R3 and then find the coordinate vector of v with
respect to this basis when

v1 =

1
2
1

 , v2 =

1
1
3

 , v3 =

2
1
3

 , v =

7
5
5

 .
The coordinate vector of v is the rightmost column in the row reduction

[
v1 v2 v3 v

]
=

1 1 2 7
2 1 1 5
1 3 3 5

 −→
1 0 0 2

0 1 0 −3
0 0 1 4

 .
To show that v1,v2,v3 form a basis of R3, we have to show that the matrix whose columns
are these vectors is invertible. In view of the row reduction above, the reduced row echelon
form of that matrix is the identity, so the matrix is certainly invertible.



3. Show that w1,w2 form a basis of R2 when

w1 =

[
2
1

]
, w2 =

[
3
1

]
.

Compute the coordinate vectors of e1 and e2 with respect to this basis.

The vectors w1,w2 form a basis of R2 because

det

[
2 3
1 1

]
= 2− 3 6= 0.

The coordinate vectors of e1 and e2 are the two rightmost columns in the row reduction

[
w1 w2 e1 e2

]
=

[
2 3 1 0
1 1 0 1

]
−→

[
1 0 −1 3
0 1 1 −2

]
.

4. Let w1,w2 be as above. Find a linear transformation T : R2 → R2 such that

T (w1) =

[
1
5

]
, T (w2) =

[
3
9

]
.

We know that T is left multiplication by a matrix A whose ith column is T (ei). Let us
then express each ei in terms of the given vectors. By the previous problem, we have

e1 = −w1 + w2 and e2 = 3w1 − 2w2.

Using the fact that T is linear, we conclude that

T (e1) = −T (w1) + T (w2) =

[
2
4

]
, T (e2) = 3T (w1)− 2T (w2) =

[
−3
−3

]
.

These are the two columns of the matrix A, hence

T

([
x
y

])
=

[
2 −3
4 −3

] [
x
y

]
=

[
2x− 3y
4x− 3y

]
.
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