
Chapter 1

Functions

1.1 Domain and range

Definition 1.1 – Domain and range

A function f : X → Y is a rule or formula that assigns a particular value f(x) to each
admissible value of x. The set of all admissible values of x is called the domain of f ,
while the set of all possible values of f(x) is called the range of f .

Definition 1.2 – Graph

The graph of a function f is the set of all points (x, y) such that y = f(x). This is a
curve in the xy-plane and every vertical line may intersect the curve at most once.

• The domain of a function is usually easy to determine. One excludes the values of x
that lead to a zero denominator, the square root of a negative number, and so on.

• The range of a function is generally hard to determine. It can be obtained using the
same approach, however, if the equation y = f(x) can be solved for x.

• The interval that consists of all points between a and b is denoted by one of

(a, b), [a, b), (a, b], [a, b].

In each case, a square bracket is used for endpoints that belong to the interval and
a round bracket is used for those that do not. Thus, the interval (a, b] consists of all
points a < x ≤ b and the interval [a, b] consists of all points a ≤ x ≤ b.

• The symbols −∞ and +∞ are used to denote infinite intervals such as

(−∞, b), (−∞, b], (a,+∞), [a,+∞).

The leftmost interval consists of all points x < b and the rightmost interval consists of
all points x ≥ a. Since the symbols −∞ and +∞ are not real numbers, they do not
belong to any interval. Thus, a round bracket is always used for −∞ and +∞.
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Functions 2 Domain and range

Example 1.3 We find the domain and the range of the function f defined by

f(x) =
5x− 1

3x− 4
.

The domain consists of all points x 6= 4/3, as the denominator cannot be zero. To find the
range, we need to find the values that are attained by y = f(x). For which values of y does
this equation actually have a solution? In our case, it is easy to check that

y =
5x− 1

3x− 4
⇐⇒ y(3x− 4) = 5x− 1 ⇐⇒ 3xy − 4y = 5x− 1.

Solving this equation for x, we bring all occurrences of x on one side and we get

3xy − 5x = 4y − 1 ⇐⇒ x(3y − 5) = 4y − 1 ⇐⇒ x =
4y − 1

3y − 5
.

The rightmost formula determines the value of x that satisfies y = f(x). Since the formula
makes sense for any number y 6= 5/3, the range consists of all numbers y 6= 5/3. �

Example 1.4 We find the domain and the range of the function f defined by

f(x) =

√

1 + x

2− x
.

When it comes to the domain, we need to have x 6= 2 to avoid a zero denominator and we
need the fraction to be non-negative. In other words, the numerator and the denominator
should have the same sign. If they are both non-negative, then one has

1 + x ≥ 0, 2− x ≥ 0 =⇒ −1 ≤ x ≤ 2.

If they are both non-positive, then one similarly has

1 + x ≤ 0, 2− x ≤ 0 =⇒ −1 ≥ x ≥ 2,

which is obviously absurd. In particular, only the former case may arise, so the domain is
the interval [−1, 2). To find the range, we note that y = f(x) is non-negative and we solve
this equation for x. Squaring both sides and rearranging terms, one finds that

y2 =
1 + x

2− x
⇐⇒ 2y2 − xy2 = 1 + x ⇐⇒ 2y2 − 1 = xy2 + x

⇐⇒ 2y2 − 1 = x(y2 + 1) ⇐⇒ x =
2y2 − 1

y2 + 1
.

The last expression is defined for all values of y, so it does not place any restrictions on y.
However, we do have the restriction y ≥ 0 which arose when we squared both sides of the
original equation. This means that the range of the given function is [0,+∞). �
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1.2 Injective, surjective and bijective

Definition 1.5 – Injective, surjective and bijective

A function f : X → Y is called injective or one-to-one, if it satisfies

f(x1) = f(x2) =⇒ x1 = x2.

A function f : X → Y is called surjective or onto, if its range is equal to Y , and it is
called bijective, if it is both injective and surjective.

• An injective function f maps distinct values of x to distinct values of y = f(x). This
means that no horizontal line may intersect the graph of f more than once.

• The function f : R → R defined by f(x) = x2 is neither injective nor surjective.

• The function f : [0,∞) → [0,∞) defined by f(x) = x2 is both injective and surjective.

Example 1.6 We show that the function f : [0, 1] → R is injective in the case that

f(x) =
4x− 3

2x+ 1
.

First, we assume that f(x1) = f(x2) and we clear denominators to write

4x1 − 3

2x1 + 1
=

4x2 − 3

2x2 + 1
=⇒ (4x1 − 3)(2x2 + 1) = (4x2 − 3)(2x1 + 1)

=⇒ 8x1x2 − 6x2 + 4x1 − 3 = 8x1x2 − 6x1 + 4x2 − 3.

Once we now cancel the common terms, we may easily conclude that

−6x2 + 4x1 = −6x1 + 4x2 =⇒ 10x1 = 10x2 =⇒ x1 = x2. �

Example 1.7 We show that the function f : (0, 1) → (0,∞) is surjective in the case that

f(x) =
x

1− x
.

Since 0 < x < 1, both x and 1 − x are positive, so the same is true for y = f(x) and the
range is contained in (0,∞). To show that the range is equal to (0,∞), we need to check
that the equation y = f(x) has a solution 0 < x < 1 for each y > 0. Let us now note that

y =
x

1− x
⇐⇒ y − xy = x ⇐⇒ y = xy + x

⇐⇒ y = x(y + 1) ⇐⇒ x =
y

y + 1
.

The rightmost formula determines the value of x that satisfies y = f(x). Since y > 0, it is
easy to see that this value x = y/(y + 1) lies in the interval (0, 1), as needed. �
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1.3 Quadratic functions

Theorem 1.8 – Quadratic functions with real roots

Consider the quadratic f(x) = ax2 + bx+ c. If it happens that b2 − 4ac ≥ 0, then f(x)
can be factored as f(x) = a(x− x1)(x− x2), where x1, x2 are its real roots

x1 =
−b−

√
b2 − 4ac

2a
, x2 =

−b+
√
b2 − 4ac

2a
. (1.1)

Theorem 1.9 – Quadratic functions with no real roots

Consider the quadratic f(x) = ax2 + bx+ c. If it happens that b2 − 4ac < 0, then f(x)
is not a product of real linear factors and thus f(x) has no real roots.

• The expression ∆ = b2 − 4ac is called the discriminant of f(x) = ax2 + bx+ c.

• The theorems above can be established by completing the square to write

f(x)

a
=

(

x+
b

2a

)2

+
4ac− b2

4a2
, (1.2)

where the right hand side is either the difference or the sum of two squares.

Example 1.10 Let f(x) = 3x2 − 4x+ 1. Then ∆ = 16− 4 · 3 = 4 is positive and

x1 =
4−

√
4

2 · 3 =
4− 2

6
=

1

3
, x2 =

4 +
√
4

2 · 3 =
4 + 2

6
= 1.

This means that f(x) can be factored as f(x) = 3(x− 1/3)(x− 1) = (3x− 1)(x− 1). �

Example 1.11 Let f(x) = 3x2 − 4x+ 1. To determine the range of f , we write

y = 3x2 − 4x+ 1

and then solve for x in terms of y. Using the quadratic formula (1.1), we get

3x2 − 4x+ (1− y) = 0 =⇒ x =
4±

√

16− 12(1− y)

2 · 3 =
4±

√
12y + 4

6
.

This gives the restriction 12y ≥ −4, namely y ≥ −1/3, so the range is [−1/3,+∞). �

Example 1.12 Let f(x) = −2x2 + 3x+ 5. Then ∆ = 9 + 4 · 10 = 49 is positive and

x1 =
−3−

√
49

2 · (−2)
=

3 + 7

4
=

5

2
, x2 =

−3 +
√
49

2 · (−2)
=

3− 7

4
= −1.

In particular, f(x) can be factored as f(x) = −2(x− 5/2)(x+ 1) = −(2x− 5)(x+ 1). �
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Example 1.13 Let f(x) = −2x2 + 3x+ 5. To determine the range of f , we note that

y = −2x2 + 3x+ 5 =⇒ 2x2 − 3x+ (y − 5) = 0.

Using the quadratic formula (1.1), one may then solve for x to conclude that

x =
3±

√

9− 8(y − 5)

2 · 2 =
3±

√
49− 8y

4
.

This gives the restriction 8y ≤ 49, namely y ≤ 49/8, so the range is (−∞, 49/8]. �

Example 1.14 We study the positivity of a quadratic polynomial with real roots, say

f(x) = a(x− x1)(x− x2), where x1 ≤ x2.

Assume that a > 0 first. Then f(x) > 0 if and only if (x − x1)(x − x2) > 0, hence if and
only if the two factors have the same sign. The two factors are both positive when

x− x1 > 0, x− x2 > 0 ⇐⇒ x > x2

and the two factors are both negative when

x− x1 < 0, x− x2 < 0 ⇐⇒ x < x1.

Since the quadratic is positive only for those values, it is negative when x1 < x < x2, so it
is negative between its two roots. This is true for the case a > 0 and the other case differs
by a sign, so any quadratic with a < 0 must be positive between its two roots. �

Example 1.15 We determine the values of x for which f(x) = 3x2 + 5x − 2 is negative.
Since ∆ = 25 + 4 · 6 = 49 is positive, the quadratic has two real roots which are given by

x1 =
−5−

√
49

2 · 3 =
−5− 7

6
= −2, x2 =

−5 +
√
49

2 · 3 =
−5 + 7

6
=

1

3
.

As in the previous example, this implies that f(x) < 0 if and only if −2 < x < 1/3. �
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Figure 1.1: The graph of the quadratic f(x) = 3x2 + 5x− 2.
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1.4 Polynomial functions

Theorem 1.16 – Rational root theorem

Suppose that f(x) = anx
n + . . .+ a1x+ a0 has integer coefficients and an 6= 0. If f has

a rational root x0, then one can write x0 = p/q for some relatively prime integers p, q
such that p divides a0 and q divides an.

Theorem 1.17 – Factor theorem

A polynomial f(x) that has x0 as a root must have x− x0 as a factor. In other words,
one may factor f(x) and write f(x) = (x− x0) · g(x) for some polynomial g(x).

• A rational number is the quotient p/q of two integers. To say that p, q are relatively
prime is to say that p, q have no common integer factor other than ±1.

• The rational root theorem is important because it gives a finite number of possible
roots. One may then list the possible roots and check which of them are actual roots.

Example 1.18 We use division of polynomials to show that

x3 + 2x2 − 3 = (x− 1)(x2 + 3x+ 3). (1.3)

The left hand side vanishes when x = 1 because 1 + 2− 3 = 0. This means that x = 1 is a
root and that x− 1 is a factor. Let us now proceed to divide the two polynomials.

x
2

x− 1 x
3 +2x2 −3

x3 −x2

3x2 −3

Division of polynomials is very similar to division of integers. The key idea is to look at the
highest powers of x in each case. First, we start out with x3 + 2x2 − 3 and x− 1. Looking
at the highest powers only, we get a quotient of x3/x = x2 and we include this term in our
answer at the top. Next, we multiply x2 by the whole divisor x − 1 and we subtract the
result from the whole dividend x3 + 2x2 − 3. This yields a remainder of 3x2 − 3.

Since the remainder 3x2 − 3 is quadratic and the divisor x − 1 is only linear, one may
now proceed as before. The next term in the quotient is 3x2/x = 3x, so we insert that term
in our answer, we multiply it by x− 1 and subtract. The new remainder is 3x− 3.

x2 +3x

x− 1 x3 +2x2 −3
x3 −x2

3x2 −3
3x2 −3x

3x −3

Needless to say, one may repeat this approach once again. The next term in the quotient
will be 3x/x = 3 and this is also the last term since 3(x − 1) = 3x − 3. In particular, the
polynomial division gives a quotient of x2 + 3x+ 3 and equation (1.3) follows. �
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Example 1.19 We use the rational root theorem to factor the polynomial

f(x) = 3x3 − 4x2 − 5x+ 2.

If there is a rational root, it must have the form p/q, where p divides 2 and q divides 3. The
only possibilities are thus ±1, ±2, ±1/3, ±2/3. Checking the first few, one finds that

f(1) = −4, f(−1) = 0, f(2) = 0, f(−2) = −28.

This means that x = −1 and x = 2 are both roots, so x+ 1 and x− 2 are both factors. To
find the third factor of the cubic polynomial, one may proceed to check the other possible
roots or else use division. Namely, (x + 1)(x − 2) = x2 − x − 2 must divide f(x) and it
remains to determine the quotient f(x)/(x2 − x− 2).

3x −1
x2 − x− 2 3x3 −4x2 −5x +2

3x3 −3x2 −6x
−x2 +x +2
−x2 +x +2

0

In view of this computation, the quotient is then 3x− 1 and so f(x) can be factored as

f(x) = (3x− 1)(x2 − x− 2) = (3x− 1)(x+ 1)(x− 2). �

Example 1.20 We use the rational root theorem to factor the polynomial

f(x) = 2x3 + x2 + x− 1.

The only possible rational roots are ±1, ±1/2 and one easily checks that

f(1) = 3, f(−1) = −3, f(1/2) = 0, f(−1/2) = −3/2.

This implies that x = 1/2 is a root and that x − 1/2 is a factor. In order to avoid dealing
with fractions, we note that 2x− 1 must also be a factor and proceed to use division.

x2 +x +1
2x− 1 2x3 +x2 +x −1

2x3 −x2

+2x2 +x −1
+2x2 −x

+2x −1
+2x −1

0

This leads to the factorisation f(x) = (2x − 1)(x2 + x + 1) and the quadratic cannot be
factored any further because its discriminant ∆ = 1− 4 · 1 = −3 is negative. �
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1.5 Trigonometric functions

Definition 1.21 – Trigonometric functions

The six trigonometric functions are defined in terms of Figure 1.2, where the angle θ is
measured in radians and the point (x, y) is on the unit circle. The sine, cosine, tangent,
cosecant, secant and cotangent of the angle θ are then defined as the ratios

sin θ = y/1, cos θ = x/1, tan θ = y/x,

csc θ = 1/y, sec θ = 1/x, cot θ = x/y.

Theorem 1.22 – Addition formulas for sine and cosine

Given any real numbers α and β, one has the addition formulas

sin(α± β) = sinα · cos β ± cosα · sin β,
cos(α± β) = cosα · cos β ∓ sinα · sin β.

• By definition, 1 radian is 180/π degrees and so 2π radians are 360 degrees.

• All trigonometric functions can be expressed in terms of sine and cosine, namely

tan θ =
sin θ

cos θ
, cot θ =

cos θ

sin θ
, sec θ =

1

cos θ
, csc θ =

1

sin θ
. (1.4)

• Using Pythagoras’ theorem along with Definition 1.21, one easily finds that

sin2 θ + cos2 θ = 1, tan2 θ + 1 = sec2 θ, cot2 θ + 1 = csc2 θ. (1.5)

Here, the first identity holds by Pythagoras’ theorem because y2 + x2 = 1. The other
two identities follow from the first upon division with cos2 θ and sin2 θ, respectively.

1
y

x
θ

Figure 1.2: This triangle is used to define the six trigonometric functions.
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Example 1.23 We use the addition formula for cosine to prove the half-angle formulas

sin2 θ =
1− cos(2θ)

2
, cos2 θ =

1 + cos(2θ)

2
. (1.6)

Since sin2 θ + cos2 θ = 1, the addition formula for cosine ensures that

cos(2θ) = cos(θ + θ) = cos2 θ − sin2 θ = 1− 2 sin2 θ.

Rearranging terms, one obtains the first identity in (1.6). This also implies the second, as

cos2 θ = 1− sin2 θ = 1− 1− cos(2θ)

2
=

1 + cos(2θ)

2
. �

Example 1.24 We relate the sines and the cosines of any two angles θ1, θ2 whose sum is
equal to π. Since θ1 + θ2 = π, we may use the addition formulas of Theorem 1.22 to get

sin θ2 = sin(π − θ1) = sin π · cos θ1 − cos π · sin θ1,
cos θ2 = cos(π − θ1) = cos π · cos θ1 + sin π · sin θ1.

On the other hand, sin π = 0 and cos π = −1 by definition, so these equations reduce to

sin θ2 = sin θ1, cos θ2 = − cos θ1. �

Example 1.25 We determine the angles 0 ≤ θ ≤ 2π which satisfy 4 sin2 θ + 8 sin θ = 5. If
we let x = sin θ to simplify the notation, then we have 4x2 + 8x− 5 = 0 and thus

x =
−8±

√
64 + 4 · 20
2 · 4 =

−8±
√
144

8
= −1± 3

2
=⇒ x =

1

2
,−5

2
.

Since x = sin θ must lie between −1 and 1, the only relevant solution is x = sin θ = 1
2
. In

view of the graph of the sine function, there should be two angles 0 ≤ θ ≤ 2π that satisfy
this condition. The first one is θ1 =

π
6
and the second one is θ2 = π − π

6
= 5π

6
. �

-2 Π -Π Π 2 Π

-1

1

-2 Π -Π Π 2 Π

-1

1

Figure 1.3: The graphs of f(x) = sin x and f(x) = cos x, respectively.
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1.6 Exponential functions

Definition 1.26 – Exponential function

The exponential function with base a > 0 is the function defined by f(x) = ax. Its
domain consists of all real numbers and its main properties are the following.

ax+y = ax · ay, (ax)y = axy, a−x = 1/ax,

ax−y = ax/ay, (ab)x = axbx, a0 = 1.

• When x is a positive integer, the power ax is defined in the usual way as the product
of x copies of a. The formula ax+y = ax · ay is then easily seen to hold. When y = 0,
this formula reduces to ax = ax · a0, so one is led to define a0 = 1 and also

1 = a0 = ax−x = ax · a−x =⇒ a−x = 1/ax.

• When x is a rational number, the power ax is defined in terms of roots. In fact, let n
be a positive integer and consider the power a1/n. To ensure that

(

a1/n
)n

= an/n = a1 = a,

one needs a1/n to be the nth root of a. This is the main reason that the base a is
required to be positive. To compute rational powers of a, one may then argue that

93/2 = (91/2)3 = 33 = 27, 84/3 = (81/3)4 = 24 = 16.

• When x is an irrational number, ax can be determined using approximations. In the
case of 3

√

2 for instance, one notes that
√
2 ≈ 1.4142 and successively computes

31.4 ≈ 4.6555, 31.41 ≈ 4.7070, 31.414≈ 4.7277, 31.4142 ≈ 4.7287.

Since the latter powers involve rational exponents, those can be computed as before.
In particular, one may obtain approximations of 3

√

2 to any level of accuracy.

-3 -2 -1 1 2 3
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Figure 1.4: The graphs of f(x) = 2x and f(x) = (1
3
)x, respectively.
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1.7 Inverse functions

Theorem 1.27 – Inverse function

If the function f : A → B is bijective, then there exists a function g : B → A such that

g(f(x)) = x for all x in A, f(g(y)) = y for all y in B.

In fact, this function is unique, it is called the inverse of f and it is denoted by g = f−1.

Definition 1.28 – Logarithmic function

Consider the exponential function defined by f(x) = ax for some a > 0. When a 6= 1,
this is a bijection f : R → (0,∞) whose inverse is denoted by loga. Moreover, the usual
properties for exponentials imply the following properties for logarithms.

loga a
x = x, loga(x · y) = loga x+ loga y, loga 1 = 0,

loga x
r = r loga x, loga(x/y) = loga x− loga y, aloga x = x.

Definition 1.29 – Inverse trigonometric functions

The sine, cosine and tangent give bijective functions between the following sets.

sin :
[

−π

2
,
π

2

]

→ [−1, 1], cos : [0, π] → [−1, 1], tan:
(

−π

2
,
π

2

)

→ R.

We may thus define sin−1 x, cos−1 x for each −1 ≤ x ≤ 1 and also tan−1 x for all x.

• One may determine the inverse function g = f−1 explicitly, if the equation y = f(x)
can be solved for x. This gives a unique solution x = g(y) whenever f is bijective.

• Note that loga x is only defined when x > 0. In particular, loga 0 is not defined.

• The values of the inverse trigonometric functions are frequently interpreted as angles.
When it comes to θ = sin−1 x, for instance, θ is an angle whose sine is equal to x.

Example 1.30 We compute the inverse function f−1 in the case that

f(x) = 1 + log3(5− 2x).

Consider the equation y = 1 + log3(5− 2x). Eliminating the logarithm, one finds that

y − 1 = log3(5− 2x) ⇐⇒ 3y−1 = 5− 2x ⇐⇒ 2x = 5− 3y−1.

Thus, the inverse function x = f−1(y) is the function defined by f−1(y) = 1
2
(5− 3y−1). �
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Example 1.31 We compute the inverse function f−1 in the case that

f(x) =
2x − 1

2x + 3
.

Proceeding as in the previous example, we first clear denominators to write

y =
2x − 1

2x + 3
⇐⇒ 2xy + 3y = 2x − 1 ⇐⇒ 3y + 1 = 2x(1− y).

This implies that 2x = 3y+1

1−y
, so the inverse function is defined by f−1(y) = log2

3y+1

1−y
. �

Example 1.32 We derive the main properties of the logarithmic function. Since loga is the
inverse of the exponential function, one must clearly have

aloga x = x, loga a
x = x, loga 1 = loga a

0 = 0.

This establishes three of the six properties, while the fourth one must hold because

xr =
(

aloga x
)r

= ar loga x =⇒ loga x
r = loga a

r log
a
x = r loga x.

To prove the formula for the logarithm of a product, we start by noting that

aloga x+log
a
y = aloga x · aloga y = x · y.

Taking the logarithm of both sides, we may thus deduce the fifth property

loga(x · y) = loga a
log

a
x+log

a
y = loga x+ loga y.

As for the remaining property about the logarithm of a quotient, this must hold because

loga(x/y) = loga(xy
−1) = loga x+ loga y

−1 = loga x− loga y. �

Example 1.33 We simplify the expression tan(sin−1 x). Note that θ = sin−1 x is an angle
whose sine is sin θ = x. When x ≥ 0, this angle arises in a right triangle with an opposite
side of length x and a hypotenuse of length 1. It follows by Pythagoras’ theorem that the
adjacent side has length

√
1− x2, so the definition of tangent gives

tan(sin−1 x) = tan θ =
opposite side

adjacent side
=

x√
1− x2

.

When x ≤ 0, the last equation holds with −x instead of x. This introduces a minus sign in
each side of the equation, so the signs get to cancel and the same equation holds. �

Example 1.34 We simplify the expression sin(tan−1 x). Note that θ = tan−1 x is an angle
whose tangent is tan θ = x. When x ≥ 0, such an angle appears in a right triangle with an
opposite side of length x and an adjacent side of length 1. The hypotenuse of the triangle
must then have length

√
x2 + 1, so the definition of sine gives

sin(tan−1 x) = sin θ =
opposite side

hypotenuse
=

x√
x2 + 1

.

When x ≤ 0, the last equation holds with −x instead of x. Once again, this changes each
side of the equation by a minus sign, so the signs cancel and the same equation holds. �



Chapter 2

Limits and continuity

2.1 Introduction to limits

• The concept of a limit is a very technical, but extremely useful, concept in calculus.
One studies the values f(x) and their behaviour as x approaches a fixed point x0. If
the values f(x) happen to approach some number L, then we say that L is the limit
of f(x) as x approaches x0. In that case, we write f(x) → L as x → x0 or simply

lim
x→x0

f(x) = L.

• Note that the limit of f(x) is obtained by looking at points x that approach x0, so
the value of the function at x0 is irrelevant. In fact, we shall frequently need to study
limits as x approaches x0 for functions f which are not even defined at x0.

• It may also happen that the values f(x) do not approach any particular number as x
approaches x0. In that case, we say that the limit limx→x0

f(x) does not exist.

Example 2.1 Consider a piecewise linear function such as the function defined by

f(x) =

{

3x+ 1 if x ≤ 2
5x− 3 if x > 2

}

.

We wish to study the limit of f(x) as x approaches 2. Since the definition of f(x) changes
at that point, we need to consider two cases. If x < 2, then f(x) = 3x + 1 and the fact
that x is approaching 2 suggests that f(x) should be approaching 3 · 2 + 1 = 7. It may also
happen that x > 2. In that case, f(x) = 5x− 3 is approaching 5 · 2− 3 = 7. Thus, f(x) is
approaching 7 in either case and one may conclude that limx→2 f(x) = 7. �

Example 2.2 Consider a slightly different version of the previous example, namely

f(x) =

{

3x+ 1 if x ≤ 2
5x− 4 if x > 2

}

.

Repeating our previous approach, one finds that f(x) is approaching 7 in the case x < 2,
but approaching 6 in the case x > 2. This suggests that limx→2 f(x) does not exist. �

13
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Example 2.3 A very useful limit that involves trigonometric functions is the limit

lim
x→0

sin x

x
= 1.

We shall eventually prove this fact directly, but it is not very clear why the limit should be
equal to 1. A common tool for developing some intuition is to make a table listing a few
representative values of x and the corresponding values for (sin x)/x.

x ± 0.1 ± 0.01 ± 0.001
(sin x)/x 0.99833 0.999983333 0.9999999983

In our case, the table suggests that (sin x)/x is approaching 1 as x approaches 0. This is
related to the fact that the graphs of sin x and x are almost identical near the origin. �

Example 2.4 A somewhat similar, yet more straightforward, example is provided by

lim
x→1

f(x), f(x) =

√

x3 + x− 2

x− 1
.

This limit can be analysed more easily because it involves an algebraic function, one that is
obtained using polynomials together with addition, subtraction, multiplication, division and
roots. Once again, let us start by making a table with some representative values.

x 0.9 0.99 0.999 1.001 1.01 1.1
f(x) 1.9261 1.9925 1.99925 2.00075 2.0075 2.076

Although f(x) is not defined at x = 1, it seems to approach the value 2 as x approaches 1.
This can also be verified directly, if one proceeds to simplify f(x) first. Since the numerator
vanishes when x = 1, it contains a factor of x− 1 and division of polynomials gives

f(x) =

√

x3 + x− 2

x− 1
=

√

(x− 1)(x2 + x+ 2)

x− 1
=

√
x2 + x+ 2.

In our case, x is approaching 1, so this expression ought to approach
√
1 + 1 + 2 = 2. �

-Π Π

-1

1

Figure 2.1: The graphs of f(x) = sin x and g(x) = x near the origin.
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2.2 Definition of limits

Definition 2.5 – Limit

We say that f(x) approaches the limit L as x approaches x0 and we write

lim
x→x0

f(x) = L

if, given any ε > 0, there exists some δ > 0 such that

0 6= |x− x0| < δ =⇒ |f(x)− L| < ε. (2.1)

• This definition asserts that |f(x)− L| gets arbitrarily small, namely smaller than any
positive number. Since the absolute value measures the distance between f(x) and L,
the definition is thus asserting that f(x) gets arbitrarily close to L.

• In practice, the parameter δ is determined after a short computation. One uses the
assumption 0 6= |x− x0| < δ to estimate |f(x)− L| and then specifies δ at the end. If
it helps to simplify the computation, one may even assume that δ ≤ 1, for instance.

Example 2.6 We use the ε-δ definition to compute the limit of a constant function. Let
us assume f(x) = c for all x. We should then have limx→x0

f(x) = c as well. To prove this
formally using the definition, we let ε > 0 be given and we note that

|f(x)− L| = |f(x)− c| = |c− c| = 0 < ε.

This estimate holds for any choice of x, so equation (2.1) is satisfied for any δ > 0. �

Example 2.7 We use the ε-δ definition to compute the limit of a linear function. Let us
assume that f(x) = ax+ b and that a 6= 0. When x is approaching x0, one expects f(x) to
be approaching ax0 + b. In other words, one expects the limit to be

L = lim
x→x0

f(x) = ax0 + b.

To prove this formally, we let ε > 0 be given and we estimate the difference

|f(x)− L| = |ax+ b− ax0 − b| = |ax− ax0| = |a| · |x− x0|.

If we assume that 0 6= |x− x0| < δ, as in (2.1), we can then estimate this expression as

|f(x)− L| = |a| · |x− x0| < |a| · δ.

To ensure that the definition (2.1) holds, we need to ensure that |f(x) − L| < ε. This can
be achieved by taking |a| · δ = ε, so an appropriate choice of δ would be δ = ε/|a|. �

Example 2.8 We use the ε-δ definition to compute L = limx→1 f(x) in the case that

f(x) =

{

4− 2x if x ≤ 1
5x− 3 if x > 1

}

.
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Since x is approaching 1 and since f(x) is either 4− 2x or 5x− 3, one expects the limit to
be L = 2. Let us now fix some ε > 0 and consider the expression

|f(x)− 2| =
{

|2− 2x| if x ≤ 1
|5x− 5| if x > 1

}

=

{

2|x− 1| if x ≤ 1
5|x− 1| if x > 1

}

.

If we assume that 0 6= |x− 1| < δ, as in (2.1), then we can easily argue that

|f(x)− 2| ≤ 5|x− 1| < 5δ.

Since our goal is to show that |f(x)− 2| < ε, an appropriate choice of δ is δ = ε/5. �

Example 2.9 We use division of polynomials to compute the limit

L = lim
x→2

2x2 − 7x+ 6

x− 2
.

The function on the right hand side is not defined at x = 2 since the denominator vanishes
at that point. However, one may still study this expression as x approaches 2. In this case,
it is easy to check that the numerator vanishes when x = 2. Thus, it must have x − 2 as a
factor and the fraction can be simplified. Using division of polynomials, we now get

L = lim
x→2

2x2 − 7x+ 6

x− 2
= lim

x→2

(x− 2)(2x− 3)

x− 2
= lim

x→2
(2x− 3).

This is the limit of a linear function. In view of Example 2.7, the limit of a linear function
as x → x0 can be obtained by letting x = x0. We conclude that L = 2 · 2− 3 = 1. �

Example 2.10 We use the ε-δ definition to compute the limit of a quadratic function, say

L = lim
x→3

f(x), f(x) = 4x2 − 7x+ 2.

In this case, we expect the limit to be L = f(3) = 17. To prove this formally, we let ε > 0
be given and we proceed to estimate the expression

|f(x)− L| = |f(x)− f(3)| = |4x2 − 7x− 15|.

The polynomial on the right hand side is f(x) − f(3), so it obviously vanishes when x = 3
and it must have x− 3 as a factor. Using division of polynomials, one can then write

|f(x)− L| = |4x2 − 7x− 15| = |x− 3| · |4x+ 5|.

The factor |x− 3| is related to our usual assumption that 0 6= |x− 3| < δ. To estimate the
remaining factor |4x+ 5|, it is convenient to assume that δ ≤ 1, in which case

|x− 3| < δ ≤ 1 =⇒ −1 < x− 3 < 1

=⇒ 2 < x < 4 =⇒ 13 < 4x+ 5 < 21.

Combining the estimates |x− 3| < δ and |4x+ 5| < 21, one may then conclude that

|f(x)− L| = |x− 3| · |4x+ 5| < 21δ ≤ ε,

as long as δ ≤ ε/21 and δ ≤ 1. An appropriate choice of δ is thus δ = min(ε/21, 1). �
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2.3 One-sided limits

Definition 2.11 – Limit from the left

We say that f(x) approaches L as x approaches x0 from the left and we write

lim
x→x

−

0

f(x) = L

if, given any ε > 0, there exists some δ > 0 such that

x0 − δ < x < x0 =⇒ |f(x)− L| < ε.

Definition 2.12 – Limit from the right

We say that f(x) approaches L as x approaches x0 from the right and we write

lim
x→x

+

0

f(x) = L

if, given any ε > 0, there exists some δ > 0 such that

x0 < x < x0 + δ =⇒ |f(x)− L| < ε.

• Comparing the last two definitions with the original definition of limits, one has

lim
x→x0

f(x) = L ⇐⇒ lim
x→x

−

0

f(x) = L = lim
x→x

+

0

f(x).

• Although the ε-δ definitions are essential for proving some general facts about limits,
we shall soon be able to compute limits without having to resort to these definitions.

Example 2.13 We compute the limit L = limx→2 f(x) in the case that

f(x) =







9− 3x if x < 2
5 if x = 2

4x− 5 if x > 2







.

Since the given function is linear on the interval (−∞, 2), its limit from the left is

lim
x→2−

f(x) = lim
x→2−

(9− 3x) = 9− 3 · 2 = 3.

The same argument applies for the interval (2,+∞), so the limit from the right is

lim
x→2+

f(x) = lim
x→2+

(4x− 5) = 4 · 2− 5 = 3.

This shows that f(x) approaches the same value as x approaches 2 from either side. In
particular, the given function approaches a limit as x → 2 and the limit is L = 3. �
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2.4 Properties of limits

Theorem 2.14 – Limits of sums, products and quotients

The limit of a sum is equal to the sum of the limits, namely

lim
x→x0

f(x) = L, lim
x→x0

g(x) = M =⇒ lim
x→x0

[f(x) + g(x)] = L+M.

The limit of a product is equal to the product of the limits, namely

lim
x→x0

f(x) = L, lim
x→x0

g(x) = M =⇒ lim
x→x0

[f(x) · g(x)] = LM.

When defined, the limit of a quotient is equal to the quotient of the limits, namely

lim
x→x0

f(x) = L, lim
x→x0

g(x) = M 6= 0 =⇒ lim
x→x0

f(x)

g(x)
=

L

M
.

Theorem 2.15 – Limits of polynomials and rational functions

Suppose that f is either a polynomial or a quotient of polynomials which is defined at
the point x0. Then the limit of f(x) as x approaches x0 agrees with the value of f at
that point. In other words, the limit of f(x) is given by

lim
x→x0

f(x) = f(x0).

• A function which is a quotient of polynomials is also known as a rational function.

• Rational functions are only defined at points at which their denominator is nonzero.

Example 2.16 According to the last theorem, one may easily compute limits such as

lim
x→2

(x3 − 3x+ 4) = 23 − 3 · 2 + 4 = 6, lim
x→3

x3 − x+ 1

x2 − 2
=

33 − 3 + 1

32 − 2
=

25

7
. �

Example 2.17 We use the last theorem and division of polynomials to find the limit

L = lim
x→−2

5x3 + 12x2 − 8

x+ 2
.

Note that the theorem does not apply directly, as the given function is not defined at the
point x = −2. Nevertheless, it is easy to check that the numerator vanishes when x = −2,
so the numerator contains a factor of x+ 2 and division of polynomials gives

L = lim
x→−2

(x+ 2)(5x2 + 2x− 4)

x+ 2
= lim

x→−2
(5x2 + 2x− 4).

This means that L is really the limit of a polynomial function, so we easily get

L = lim
x→−2

(5x2 + 2x− 4) = 5(−2)2 + 2(−2)− 4 = 20− 4− 4 = 12. �
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2.5 Definition of continuity

Definition 2.18 – Continuity

We say that a function f is continuous at the point x0, if it happens that

lim
x→x0

f(x) = f(x0). (2.2)

Thus, f is continuous at x0 if, given any ε > 0, there exists some δ > 0 such that

|x− x0| < δ =⇒ |f(x)− f(x0)| < ε. (2.3)

Theorem 2.19 – Examples of continuous functions

The polynomial, trigonometric and exponential functions are all continuous throughout
their domains. The same is true for the square root function defined by f(x) =

√
x and

any sum, product or quotient of continuous functions is continuous.

Theorem 2.20 – Squeeze theorem

Suppose that f(x) ≤ g(x) ≤ h(x) in some interval around the point x0 and

lim
x→x0

f(x) = lim
x→x0

h(x) = L.

Then the function g must also attain the same limit, namely limx→x0
g(x) = L as well.

• In practice, the condition in (2.2) is usually sufficient for checking the continuity of a
given function. The condition in (2.3) is equivalent, but it is mostly needed for proofs.

• The continuity condition (2.2) can also be stated in terms of one-sided limits as

lim
x→x

−

0

f(x) = lim
x→x

+

0

f(x) = f(x0).

Example 2.21 We show that the function f is discontinuous at the point x = 3 when

f(x) =

{

3x2 − 2x+ 1 if x ≤ 3
x3 − 2x2 + 5 if x > 3

}

.

Since this function is a polynomial on the interval (−∞, 3), its limit from the left is

lim
x→3−

f(x) = lim
x→3−

(3x2 − 2x+ 1) = 3 · 9− 2 · 3 + 1 = 22.

The same argument applies for the interval (3,+∞), so the limit from the right is

lim
x→3+

f(x) = lim
x→3+

(x3 − 2x2 + 5) = 27− 2 · 9 + 5 = 14.

Thus, the one-sided limits are not equal and f is not continuous at the point x = 3. �
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Example 2.22 We examine the continuity of the function f at the point x = 3 when

f(x) =







x2 + 2x+ a if x < 3
2a− b if x = 3

x2 − bx+ 1 if x > 3







.

Since f is a polynomial on the intervals (−∞, 3) and (3,+∞), one easily finds that

lim
x→3−

f(x) = lim
x→3−

(x2 + 2x+ a) = a+ 15,

lim
x→3+

f(x) = lim
x→3+

(x2 − bx+ 1) = 10− 3b.

In particular, f is continuous at the given point if and only if

a+ 15 = 10− 3b = 2a− b.

Solving this system of equations, one obtains a unique solution which is given by

−5− 3b = a = 5− b =⇒ 2b = −10 =⇒ b = −5 =⇒ a = 10.

We conclude that f is continuous at the given point if and only if a = 10 and b = −5. �

Example 2.23 We show that the function f is discontinuous at all points when

f(x) =

{

1 if x is rational
0 if x is irrational

}

.

This is one of the few cases for which condition (2.3) becomes useful. Suppose that f is
continuous at some point x0. We can then take ε = 1 to find some δ > 0 such that

|x− x0| < δ =⇒ |f(x)− f(x0)| < 1.

Rearranging terms in the last equation, one may also express it in the form

x0 − δ < x < x0 + δ =⇒ f(x0)− 1 < f(x) < f(x0) + 1.

If it happens that x0 is rational, then f(x0) = 1 and our conclusion above reads

x0 − δ < x < x0 + δ =⇒ 0 < f(x) < 2.

In view of the definition of f , this gives f(x) = 1 for all points in (x0 − δ, x0 + δ), so this
interval does not contain any irrational numbers and we have reached a contradiction. If it
happens that x0 is irrational, then f(x0) = 0 and our conclusion above reads

x0 − δ < x < x0 + δ =⇒ −1 < f(x) < 1.

Once again, this gives f(x) = 0 for all points in (x0 − δ, x0 + δ), so this interval does not
contain any rational numbers and another contradiction is reached. We conclude that the
condition (2.3) does not hold at any point, so f is discontinuous at all points. �
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2.6 Properties of continuous functions

Theorem 2.24 – Continuity and positivity

Suppose that the function f is continuous at the point x0.

(a) If f(x0) > 0, then there exists δ > 0 such that f(x) > 0 for all x0− δ < x < x0+ δ.

(b) If f(x0) < 0, then there exists δ > 0 such that f(x) < 0 for all x0− δ < x < x0+ δ.

Theorem 2.25 – Composition of continuous functions

If the function f is continuous at the point x0 and the function g is continuous at the
point f(x0), then the composition g ◦ f is continuous at the point x0.

• Plainly stated, Theorem 2.24 asserts that a continuous function which is positive at a
point must be positive in a whole interval around that point.

• The composition g ◦ f of two functions is defined by the formula (g ◦ f)(x) = g(f(x)).

Example 2.26 The proof of Theorem 2.24 is fairly short. Let us assume that f(x0) > 0,
as the other case is similar. If we take ε = f(x0), then we can find some δ > 0 such that

x0 − δ < x < x0 + δ =⇒ f(x0)− ε < f(x) < f(x0) + ε =⇒ f(x) > 0. �

Example 2.27 The result of Theorem 2.25 is commonly used to compute limits such as

lim
x→3

√

x3 − 2x2 − 7

x2 − 2x+ 5
=

√

27− 2 · 9− 7

9− 2 · 3 + 5
=

√

2

8
=

1

2
.

Since the composition of continuous functions is known to be continuous, the limit on the
left hand side is that of a continuous function, so one may simply substitute x = 3. �

Example 2.28 Given an arbitrary function f and a continuous function g, one has

lim
x→x0

g(f(x)) = g

(

lim
x→x0

f(x)

)

. (2.4)

For instance, the limit of a square root is the square root of the limit. The proof of this
identity relies on the ε-δ definition, but the general idea is simple. Let L = limx→x0

f(x) for
simplicity. Our assumption that g is continuous can be expressed in the form

lim
z→z0

g(z) = g(z0).

In our case, we have x → x0 and f(x) → L, so we must also have g(f(x)) → g(L) by the
last equation. This suggests that the limit of g(f(x)) should be g(L), as needed. �
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2.7 Intermediate value theorem

Theorem 2.29 – Bolzano’s theorem

Suppose that f is continuous on [a, b] and f(a), f(b) have opposite sign. Then f has a
root in (a, b). In other words, there exists a point a < x < b such that f(x) = 0.

Theorem 2.30 – Intermediate Value Theorem

If a function f is continuous on [a, b], then f attains all values between f(a) and f(b).

• The function f must be continuous throughout [a, b] for these theorems to hold. For
instance, f(x) = 1/x attains both positive and negative values, but it is never zero.

• The Intermediate Value Theorem appears more general than Bolzano’s theorem, but
the two are actually equivalent. One may use either of them to prove the other.

Example 2.31 We use Bolzano’s theorem to show that there exists a real number x such
that cos x = x. Consider the function f defined by f(x) = cos x− x. Being the difference of
continuous functions, f is obviously continuous and it also satisfies

f(0) = cos 0 = 1, f(π/2) = cos(π/2)− π/2 = −π/2.

Since f(0) and f(π/2) have opposite signs, we find that f(x) = 0 for some 0 < x < π/2. �

Example 2.32 We use Bolzano’s theorem to locate the roots of the polynomial

f(x) = 2x3 − 6x+ 1.

To show that f has three roots in the interval (−2, 2), we note that f is continuous with

f(−2) = −3, f(−1) = 5, f(0) = 1, f(1) = −3, f(2) = 5.

Since the values f(−2) and f(−1) have opposite signs, f has a root that lies in (−2,−1).
The same argument yields a second root in (0, 1) and also a third root in (1, 2). �

Example 2.33 We approximate the root 0 < x < 1 that appears in the previous example.
As we already know, the function f changes sign on the interval [0, 1]. Consider the points
that one obtains by dividing this interval into 100 smaller subintervals, say

xk = k/100, 0 ≤ k ≤ 100.

Since f changes sign on the interval [0, 1], it must change sign on a subinterval [xk, xk+1].
We now compute the values f(xk) and find a change of sign between 0.16 and 0.17. This
gives an approximation of the root. If one wishes to obtain a better approximation, then
one may simply introduce a larger number of points and subintervals. �
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2.8 Infinite limits

Definition 2.34 – Infinite limits

If a function f is defined near the point x0 and its values f(x) become arbitrarily large
as x approaches x0 from the left, then we say that the limit of f(x) from the left is

lim
x→x

−

0

f(x) = +∞. (2.5)

Moreover, there are similar definitions that one may introduce for limits of the form

lim
x→x

−

0

f(x) = −∞, lim
x→x

+

0

f(x) = +∞, lim
x→x

+

0

f(x) = −∞.

• It is also possible to give a rigourous definition that resembles the ε-δ definition for
finite limits. To say that (2.5) holds, for instance, is to say that f(x) becomes larger
than any positive number. Given any N > 0, there should thus exist δ > 0 such that

0 6= |x− x0| < δ =⇒ f(x) > N.

• Infinite limits usually arise when a denominator becomes zero. In that case, one has
to determine the sign of the denominator in order to find the value of the limit.

Example 2.35 We consider two rational functions and compute their limits

L1 = lim
x→2−

x2 − 3x+ 5

x− 2
, L2 = lim

x→2+

3x2 − 4x+ 6

2x2 − 5x+ 2
.

When it comes to the first limit, the numerator is nonzero when x = 2 and this gives

L1 = lim
x→2−

4− 6 + 5

x− 2
= lim

x→2−

3

x− 2
= −∞

because x− 2 is arbitrarily small but negative. When it comes to the second limit, we have

L2 = lim
x→2+

3x2 − 4x+ 6

2x2 − 5x+ 2
= lim

x→2+

12− 8 + 6

2x2 − 5x+ 2
= lim

x→2+

10

2x2 − 5x+ 2
.

The denominator becomes zero when x = 2, so we need to determine its sign. This can be
done more easily, if one factors the denominator. Using division of polynomials, we get

L2 = lim
x→2+

10

(x− 2)(2x− 1)
= lim

x→2+

10

(x− 2) · 3 = +∞. �

Example 2.36 We consider the tangent function and compute its limit

L3 = lim
x→π

2

−

tan x = lim
x→π

2

−

sin x

cos x
.

Since sin(π/2) = 1 and cos(π/2) = 0, the numerator can be treated easily and one has

L3 = lim
x→π

2

−

sin x

cos x
= lim

x→π

2

−

1

cos x
.

To determine the sign of the denominator, we recall that cos x > 0 whenever 0 < x < π/2.
Since x is approaching π/2 from the left, cos x is thus positive and the limit is +∞. �
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2.9 Limits at infinity

Theorem 2.37 – Limits of rational functions

The following statements hold for each real number p > 0 and each integer n > 0.

lim
x→+∞

xp = +∞, lim
x→−∞

xn =

{

−∞ if n is odd
+∞ if n is even

}

, lim
x→±∞

1

xn
= 0.

Moreover, the limit of a polynomial function f can be determined using the formula

lim
x→±∞

f(x) = lim
x→±∞

(

anx
n + . . .+ a1x+ a0

)

= lim
x→±∞

anx
n. (2.6)

Theorem 2.38 – Limits of exponentials and logarithms

The exponential and logarithmic functions with base a > 1 are such that

lim
x→+∞

ax = +∞, lim
x→−∞

ax = 0, lim
x→+∞

loga x = +∞, lim
x→0+

loga x = −∞.

The remaining case 0 < a < 1 is slightly different and the corresponding limits are

lim
x→+∞

ax = 0, lim
x→−∞

ax = +∞, lim
x→+∞

loga x = −∞, lim
x→0+

loga x = +∞.

• Equation (2.6) asserts that every polynomial behaves like its highest-order term for
large values of x. This is because the lower-order terms are considerably smaller.

• One may use equation (2.6) to find the limit of any rational function as x → ±∞.

Example 2.39 We consider two rational functions and compute their limits

L1 = lim
x→±∞

4x3 − 3x+ 2

5x3 − 2x2 + 1
, L2 = lim

x→±∞

2x2 − 7x+ 1

5x3 − 4x+ 3
.

When it comes to the first limit, one may easily argue that

L1 = lim
x→±∞

4x3 − 3x+ 2

5x3 − 2x2 + 1
= lim

x→±∞

4x3

5x3
=

4

5
.

When it comes to the second limit, one similarly has

L2 = lim
x→±∞

2x2 − 7x+ 1

5x3 − 4x+ 3
= lim

x→±∞

2x2

5x3
= lim

x→±∞

2

5x
= 0. �

Example 2.40 We use Theorem 2.38 in order to compute the limit

L3 = lim
x→+∞

3x + 4x

4x + 5x
.
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In this case, one may argue that 3x is much smaller compared to 4x which is much smaller
compared to 5x. Let us then isolate the dominant terms and write

L3 = lim
x→+∞

3x + 4x

4x + 5x
= lim

x→+∞

4x

5x
· (3/4)

x + 1

(4/5)x + 1
.

According to the theorem, both (3/4)x and (4/5)x must approach zero as x → +∞, so

L3 = lim
x→+∞

4x

5x
· 0 + 1

0 + 1
= lim

x→+∞

(

4

5

)x

= 0. �

Example 2.41 We use limits to analyse the rational function f which is defined by

f(x) =
4x− 2

x− 3
.

First of all, we note that the domain consists of all points x 6= 3. Although f is not defined
at the point x = 3, it is defined at all nearby points and one easily finds that

lim
x→3−

f(x) = lim
x→3−

4x− 2

x− 3
= lim

x→3−

10

x− 3
= −∞,

lim
x→3+

f(x) = lim
x→3+

4x− 2

x− 3
= lim

x→3+

10

x− 3
= +∞.

These limits describe the behaviour of the function near the missing point x = 3. We can
also determine the behaviour of the function as x → ±∞. Using equation (2.6), we get

lim
x→±∞

f(x) = lim
x→±∞

4x− 2

x− 3
= lim

x→±∞

4x

x
= 4.

Note that this value is approached for large enough x, but it is never attained because

f(x) =
4x− 2

x− 3
=

4(x− 3) + 10

x− 3
= 4 +

10

x− 3

is never equal to 4. A precise graph of the given function appears in the figure below. �
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Figure 2.2: The graph of f(x) = 4x−2

x−3
.



Chapter 3

Differentiation

3.1 Definition of derivative

Definition 3.1 – Average rate of change

The average rate of change of a function f over the interval [x0, x1] is defined as

f(x1)− f(x0)

x1 − x0

.

Definition 3.2 – Derivative

We say that the function f is differentiable at the point x0, if the limit

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

(3.1)

exists. When this limit does exist, we call it the derivative of f at the point x0.

• The derivative f ′(x0) gives the rate at which the function f changes at the point x0.
It is also known as the instantaneous rate of change at that point.

• A function which is differentiable at the point x0 must be continuous at x0 because

lim
x→x0

[f(x)− f(x0)] = lim
x→x0

f(x)− f(x0)

x− x0

· (x− x0) = f ′(x0) · 0 = 0.

• However, a function which is continuous at x0 need not be differentiable at x0. For
instance, f(x) = |x| is continuous at x = 0, but it is not differentiable at x = 0.

Example 3.3 To show that f(x) = ax+ b is differentiable at all points, we note that

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

= lim
x→x0

ax+ b− (ax0 + b)

x− x0

= lim
x→x0

a(x− x0)

x− x0

= a.

This actually proves that linear functions have the same rate of change at all points. �
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Example 3.4 To show that f(x) = x2 is differentiable at all points, we note that

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

= lim
x→x0

x2 − x2
0

x− x0

= lim
x→x0

(x− x0)(x+ x0)

x− x0

.

Once we now cancel the factor x− x0, we obtain the limit of a linear function, so

f ′(x0) = lim
x→x0

(x+ x0) = 2x0. �

Example 3.5 We show that f(x) = |x| is not differentiable at the point x0 = 0. Since the
absolute value is defined as |x| = x whenever x > 0, one easily finds that

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

|x|
x

= lim
x→0+

x

x
= 1.

On the other hand, one has |x| = −x for the remaining values x < 0, and this implies

lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−

|x|
x

= lim
x→0−

−x

x
= −1.

In particular, the one-sided limits are not equal, so the limit (3.1) does not exist. �

Example 3.6 We compute the derivative of f(x) = 1/x at any point x0 6= 0. Since

f(x)− f(x0) =
1

x
− 1

x0

=
x0 − x

xx0

,

one may use the definition (3.1) of the derivative to conclude that

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

= lim
x→x0

−1

xx0

= − 1

x2
0

. �

Example 3.7 We compute the derivative of f(x) =
√
x. In this case, one has

f(x)− f(x0)

x− x0

=

√
x−√

x0

x− x0

=
1√

x+
√
x0

and the square root function is known to be continuous, so the last equation gives

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

= lim
x→x0

1√
x+

√
x0

=
1

2
√
x0

.

This proves that f is differentiable at any point x0 > 0. When x0 = 0, one finds that

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

√
x

x
= lim

x→0+

1√
x
= +∞.

In particular, the graph of the given function is virtually vertical at the point x0 = 0. �



Differentiation 28 Rules of differentiation

3.2 Rules of differentiation

Theorem 3.8 – Sums and constant multiples

Suppose that the functions f, g are differentiable at x and c is a fixed constant. Then
both f + g and c · f are differentiable at x and their derivatives are given by

[f(x) + g(x)]′ = f ′(x) + g′(x), [c · f(x)]′ = c · f ′(x).

Theorem 3.9 – Product rule

Suppose that the functions f, g are differentiable at x. Then their product f · g is also
differentiable at x and its derivative is given by

[f(x) · g(x)]′ = f ′(x) · g(x) + f(x) · g′(x).

Theorem 3.10 – Quotient rule

Suppose that the functions f, g are differentiable at x and suppose that g(x) 6= 0. Then
the quotient f/g is also differentiable at x and its derivative is given by

[

f(x)

g(x)

]

′

=
f ′(x) · g(x)− f(x) · g′(x)

g(x)2
.

Example 3.11 We use the product rule and induction to prove the power rule

(xn)′ = nxn−1 for each positive integer n. (3.2)

Suppose first that n = 1. Then xn = x and so (xn)′ = 1 = 1x0. Thus, the given formula
does hold when n = 1. If we now assume that the formula holds for some n, then

(xn+1)′ = (xn · x)′ = nxn−1 · x+ xn · 1 = (n+ 1)xn.

In particular, the formula holds for n+ 1 as well and the result follows by induction. �

Example 3.12 One may use the formula from the previous example to differentiate any
given polynomial. Since the derivative of a sum is the sum of the derivatives, one has

(x4 + 3x2 + 2x)′ = (x4)′ + 3(x2)′ + 2(x)′ = 4x3 + 3 · 2x+ 2 · 1 = 4x3 + 6x+ 2. �

Example 3.13 Using formula (3.2) along with the quotient rule, one finds that

(

x2 − 1

3x+ 1

)

′

=
2x · (3x+ 1)− 3 · (x2 − 1)

(3x+ 1)2
=

6x2 + 2x− 3x2 + 3

(3x+ 1)2
=

3x2 + 2x+ 3

(3x+ 1)2
. �
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3.3 Derivatives of standard functions

Theorem 3.14 – Derivatives of trigonometric functions

The trigonometric functions are differentiable and their derivatives are given by

(sin x)′ = cosx, (sec x)′ = secx tan x, (tan x)′ = sec2 x,

(cosx)′ = − sin x, (csc x)′ = − csc x cot x, (cot x)′ = − csc2 x.

Theorem 3.15 – Derivative of exponential functions

Every exponential function is differentiable and the derivative of f(x) = ax is given by

(ax)′ = Ca · ax, Ca = lim
z→0

az − 1

z
.

The simplest version of this formula arises for a number e > 1 which satisfies

(ex)′ = ex, e = lim
z→0

(1 + z)1/z .

Definition 3.16 – Natural logarithm

The inverse of the exponential f(x) = ex is called the natural logarithm g(x) = ln x.
One may express every logarithmic function in terms of ln x by writing

loga x =
ln x

ln a
.

Example 3.17 According to the quotient rule, the derivative of tan x is given by

(tan x)′ =

(

sin x

cos x

)

′

=
(sin x)′ · cos x− (cos x)′ · sin x

cos2 x
.

Since (sin x)′ = cos x and (cos x)′ = − sin x, one may simplify the last equation to get

(tan x)′ =
cos2 x+ sin2 x

cos2 x
=

1

cos2 x
= sec2 x. �

Example 3.18 Using Theorem 3.14 along with the product rule, one finds that

(x3 · sec x)′ = (x3)′ · sec x+ x3 · (sec x)′ = 3x2 sec x+ x3 sec x tan x.

Using Theorem 3.14 along with the quotient rule, one similarly finds that

(

sin x

x2

)

′

=
(sin x)′ · x2 − (x2)′ · sin x

x4
=

x2 cos x− 2x sin x

x4
=

x cos x− 2 sin x

x3
. �
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3.4 Derivatives of inverse functions

Theorem 3.19 – Derivative of inverse function

Suppose that f : A → B is a bijective differentiable function and let g : B → A be the
inverse function. Then g is differentiable at all points x with f ′(g(x)) 6= 0 and

g′(x) =
1

f ′(g(x))
.

Theorem 3.20 – Derivatives of inverse trigonometric functions

The inverse trigonometric functions are differentiable and their derivatives are given by

(

sin−1 x
)

′

=
1√

1− x2
,

(

cos−1 x
)

′

= − 1√
1− x2

,
(

tan−1 x
)

′

=
1

x2 + 1
.

Theorem 3.21 – Derivative of logarithmic function

The logarithmic function is differentiable and its derivative is given by

(ln x)′ =
1

x
for all x > 0.

Example 3.22 To verify the formula for the derivative of sin−1 x, we consider the case

f(x) = sin x, g(x) = sin−1 x.

Since g is the inverse function of f , one may apply Theorem 3.19 to find that

g′(x) =
1

f ′(g(x))
=

1

cos(g(x))
=

1

cos(sin−1 x)
.

It remains to simplify the right hand side. Letting θ = sin−1 x for simplicity, we get

sin θ = x =⇒ cos2 θ = 1− sin2 θ = 1− x2.

On the other hand, θ = sin−1 x is between −π/2 and π/2 by definition, so cos θ ≥ 0 and

cos θ =
√
1− x2 =⇒ g′(x) =

1

cos(sin−1 x)
=

1

cos θ
=

1√
1− x2

. �

Example 3.23 To verify the formula for the derivative of ln x, we consider the case

f(x) = ex, g(x) = ln x.

Since f ′(x) = f(x) and g is the inverse function, one may apply Theorem 3.19 to get

g′(x) =
1

f ′(g(x))
=

1

f(g(x))
=

1

x
. �
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3.5 Chain rule

Theorem 3.24 – Chain rule

Suppose that f is differentiable at x and suppose that g is differentiable at f(x). Then
the composition g ◦ f is differentiable at x and its derivative is given by

[g(f(x))]′ = g′(f(x)) · f ′(x). (3.3)

• The chain rule is easier to express in terms of the Leibniz notation for derivatives.
This amounts to writing dy

dx
for the derivative of y with respect to x. When y = g(u)

depends on some variable u and u = f(x) depends on x, one has y = g(f(x)) and

dy

dx
= [g(f(x))]′ = g′(f(x)) · f ′(x) = g′(u) · f ′(x) =

dy

du
· du
dx

. (3.4)

• To differentiate compositions of three or more functions, one may simply apply the
chain rule repeatedly. When it comes to three functions, one finds that

[h(g(f(x)))]′ = h′(g(f(x))) · g′(f(x)) · f ′(x).

Example 3.25 A typical application of the chain rule (3.3) gives the formula

[f(x)n]′ = nf(x)n−1 · f ′(x). (3.5)

This allows us to differentiate the powers of any given function. For instance, one has

y = (sin x+ 4x2)3 =⇒ y′ = 3(sin x+ 4x2)2 · (sin x+ 4x2)′

=⇒ y′ = 3(sin x+ 4x2)2 · (cos x+ 8x). �

Example 3.26 Another typical application of the chain rule (3.3) gives the formula

[sin f(x)]′ = cos f(x) · f ′(x). (3.6)

This allows us to differentiate the sine of any given function. For instance, one has

y = sin(2x3 + tan x) =⇒ y′ = cos(2x3 + tan x) · (2x3 + tan x)′

=⇒ y′ = cos(2x3 + tan x) · (6x2 + sec2 x). �

Example 3.27 We use the chain rule (3.3) to compute the derivative of

y = tan(e2x).

Since (tan x)′ = sec2 x and (ex)′ = ex, we may apply the chain rule twice to find that

y′ = sec2(e2x) · (e2x)′ = sec2(e2x) · e2x · (2x)′ = 2e2x sec2(e2x). �
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Example 3.28 We use the chain rule (3.3) to compute the derivative of

y = ln(cos(x2)).

In this case, we have (ln x)′ = 1/x and (cos x)′ = − sin x, so the chain rule gives

y′ =
1

cos(x2)
·
[

cos(x2)
]

′

= − 1

cos(x2)
· sin(x2) · (x2)′ = −2x tan(x2). �

Example 3.29 We use the chain rule (3.3) to compute the derivative of

y = tan−1(eax)

for any given constant a. Since (tan−1 x)′ = 1

x2+1
, we may apply the chain rule to get

y′ =
1

(eax)2 + 1
· (eax)′ = 1

e2ax + 1
· eax · (ax)′ = aeax

e2ax + 1
. �

Example 3.30 The Leibniz form of the chain rule (3.4) is often useful when one needs to
deal with several variables at the same time. In those cases, the notation y′ is ambiguous,
so the Leibniz notation dy

dx
is naturally preferable. Suppose, for instance, that

y = sin u, u = secw, w = tan x.

Since y is expressed in terms of u, one may compute dy
du

directly by simply differentiating
the relevant equation. The same is true for du

dw
and dw

dx
. To compute some other derivative,

however, one needs to resort to the chain rule (3.4). When it comes to dy
dw
, one has

dy

dw
=

dy

du
· du
dw

= cos u · secw tanw.

When it comes to dy
dx
, the exact same argument applies to show that

dy

dx
=

dy

du
· du
dw

· dw
dx

= cos u · secw tanw · sec2 x. �

Example 3.31 We use the Leibniz form of the chain rule (3.4) to compute dy
dθ

when

y = u4, u =
x− 1

x+ 1
, x = sin θ.

Differentiating the given equations, one may easily determine the derivatives

dy

du
= 4u3,

du

dx
=

x+ 1− (x− 1)

(x+ 1)2
=

2

(x+ 1)2
,

dx

dθ
= cos θ.

To express the derivative dy
dθ

in terms of those, we now use the chain rule (3.4) to get

dy

dθ
=

dy

du
· du
dx

· dx
dθ

=
8u3 cos θ

(x+ 1)2
. �



Differentiation 33 Implicit differentiation

3.6 Implicit differentiation

• When a variable y depends on a variable x, one usually has an explicit formula which
expresses y = f(x) as a function of x. In that case, the derivative y′ = f ′(x) can be
determined directly using the standard rules of differentiation.

• Suppose, more generally, that the variables x, y are related by some equation which
does not necessarily have the form y = f(x). One may then differentiate both sides of
the equation and determine y′ without having to solve for y in terms of x.

Example 3.32 Consider the coordinates x, y of a point that lies on the hyperbola

y2 − x2 = 1. (3.7)

If one uses this equation to solve for y in terms of x, then one finds that

y2 = x2 + 1 =⇒ y = ±
√
x2 + 1 =⇒ y′ = ± 2x

2
√
x2 + 1

=
x

y
.

However, it is also possible to differentiate (3.7) directly without having to solve for y first.
Differentiating with respect to x, one has (y2)′ = 2yy′ because of the chain rule, so

y2 − x2 = 1 =⇒ 2yy′ − 2x = 0 =⇒ yy′ = x =⇒ y′ =
x

y
. �

Example 3.33 Suppose that the variables x, y are related by the equation

y + cos y = x3.

In this case, it is impossible to solve for y in terms of x. Let us then differentiate directly.
Using the chain rule to differentiate cos y, we find that

y′ − (sin y)y′ = 3x2 =⇒ y′(1− sin y) = 3x2 =⇒ y′ =
3x2

1− sin y
. �

Example 3.34 We compute the derivative y′ = dy
dx

in the case that

x3 + y = sin(x2y).

Differentiating both sides of this equation, we use the chain rule to get

3x2 + y′ = cos(x2y) · (x2y)′.

The derivative on the right hand side is the derivative of a product, so we actually have

3x2 + y′ = cos(x2y) · (2x · y + x2 · y′).

It remains to solve this equation for y′. Expanding the right hand side gives

3x2 + y′ = 2xy cos(x2y) + x2y′ cos(x2y)

and we may finally collect the terms which contain y′ to conclude that

y′ − x2y′ cos(x2y) = 2xy cos(x2y)− 3x2 =⇒ y′ =
2xy cos(x2y)− 3x2

1− x2 cos(x2y)
. �
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Example 3.35 We use implicit differentiation to compute the derivative of

y =
√

e3x + sin2 x+ 4.

Even though y can be differentiated directly, it is simpler to start by writing

y2 = e3x + sin2 x+ 4.

This allows us to avoid the square root. Differentiating both sides of the equation, we get

2yy′ = 3e3x + 2 sin x cos x =⇒ y′ =
3e3x + 2 sin x cos x

2y
. �

Example 3.36 Suppose that the variables x, y are related by the equation

cos(ey) = exy.

Using both the chain rule and the product rule, one finds that

− sin(ey) · (ey)′ = exy + exy′ =⇒ − sin(ey) · eyy′ = exy + exy′.

Once we now rearrange terms and solve for y′, we arrive at

− (ey sin(ey) + ex) · y′ = exy =⇒ y′ = − exy

ey sin(ey) + ex
. �

Example 3.37 We compute the derivative y′ = dy
dx

in the case that

sin(x/y) = e2x + y.

First, we differentiate both sides with respect to x. In view of the chain rule, one has

cos(x/y) · (x/y)′ = 2e2x + y′.

The derivative on the left hand side is the derivative of a quotient, so we actually have

cos(x/y) · y − xy′

y2
= 2e2x + y′.

To solve this equation for y′, we now expand the left hand side and write

cos(x/y) · 1
y
− cos(x/y) · xy

′

y2
= 2e2x + y′.

Collecting the terms which contain y′ and clearing denominators, we conclude that

(

x cos(x/y)

y2
+ 1

)

· y′ = cos(x/y)

y
− 2e2x =⇒ y′ =

y cos(x/y)− 2y2e2x

x cos(x/y) + y2
. �
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3.7 Logarithmic differentiation

• Logarithms are useful for simplifying products, quotients and exponents because

ln(x · y) = ln x+ ln y, ln
x

y
= ln x− ln y, ln xr = r ln x.

• If a function involves products, quotients and exponents, one may thus introduce the
logarithm of the function in order to simplify it before differentiating.

• This approach is called logarithmic differentiation and it relies on the formula

[

ln |x|
]

′

=
1

x
,

[

ln |f(x)|
]

′

=
f ′(x)

f(x)
. (3.8)

Example 3.38 We use logarithmic differentiation to compute the derivative of

f(x) = (x2 + 1)3 · (x4 + 5x2 + 3)6 · e8x.

Since f(x) is positive in this case, its logarithm ln f(x) is defined for all x and

ln f(x) = ln(x2 + 1)3 + ln(x4 + 5x2 + 3)6 + ln e8x

= 3 ln(x2 + 1) + 6 ln(x4 + 5x2 + 3) + 8x.

Differentiating both sides of this equation, one may now use the chain rule to get

f ′(x)

f(x)
=

3 · 2x
x2 + 1

+
6(4x3 + 10x)

x4 + 5x2 + 3
+ 8.

In other words, the derivative of the given function is

f ′(x) = f(x) ·
(

6x

x2 + 1
+

12(2x3 + 5x)

x4 + 5x2 + 3
+ 8

)

. �

Example 3.39 We use logarithmic differentiation to establish the power rule

(xn)′ = nxn−1 for any real number n.

Since f(x) = xn is not necessarily positive, let us introduce absolute values and write

|f(x)| = |xn| = |x|n =⇒ ln |f(x)| = ln |x|n = n · ln |x|.

Differentiating both sides of the rightmost equation, we may thus conclude that

f ′(x)

f(x)
=

n

x
=⇒ f ′(x) =

nf(x)

x
=

nxn

x
= nxn−1. �
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Example 3.40 We use logarithmic differentiation to compute the derivative of y = ax for
any given base a > 0. Since a is constant, the same is true for ln a and one has

y = ax =⇒ ln y = ln ax = x ln a =⇒ y′

y
= ln a =⇒ y′ = y ln a.

This proves the formula (ax)′ = ax ln a which is closely related to Theorem 3.15. �

Example 3.41 We use logarithmic differentiation to compute the derivative of

f(x) = xx, x > 0.

It is a common mistake to argue that f ′(x) = x · xx−1, but this is not correct because the
power rule (xn)′ = nxn−1 is only valid when the exponent n is a constant. Let us write

ln f(x) = ln xx = x · ln x

and then differentiate both sides of the equation. Using the product rule, we get

f ′(x)

f(x)
= 1 · ln x+ x · 1

x
= ln x+ 1 =⇒ f ′(x) = f(x) · (ln x+ 1)

=⇒ f ′(x) = xx · (ln x+ 1). �

Example 3.42 We use logarithmic differentiation to compute f ′(0) in the case that

f(x) =
(x2 + 3x+ 1)5 ·

√
3x2 + 4 cos x

e2x − 3x
.

Since the given expression is somewhat messy, it is better to simplify first. Let us write

|f(x)| = |x2 + 3x+ 1|5 · |3x2 + 4 cos x|1/2 · |e2x − 3x|−1

and then take logarithms of both sides to find that

ln |f(x)| = ln |x2 + 3x+ 1|5 + ln |3x2 + 4 cos x|1/2 + ln |e2x − 3x|−1

= 5 ln |x2 + 3x+ 1|+ 1

2
ln |3x2 + 4 cos x| − ln |e2x − 3x|.

Using the chain rule and formula (3.8), in particular, we conclude that

f ′(x)

f(x)
=

5(2x+ 3)

x2 + 3x+ 1
+

6x− 4 sin x

2(3x2 + 4 cos x)
− 2e2x − 3

e2x − 3x
.

It remains to evaluate this expression at the point x = 0. Since f(0) =
√
4 = 2, we get

f ′(0)

2
= 5 · 3 + 0− (2− 3) = 15 + 1 = 16 =⇒ f ′(0) = 32. �
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3.8 Mean value theorem

Theorem 3.43 – Extreme value theorem

If a function f is continuous on a finite interval [a, b], then f attains both a minimum
and a maximum value on [a, b]. That is, there exist points x1, x2 ∈ [a, b] such that

f(x1) ≤ f(x) ≤ f(x2) for all x ∈ [a, b].

Theorem 3.44 – Rolle’s theorem

If a function f is continuous on [a, b] and differentiable on (a, b) with f(a) = f(b), then
there exists a point c in the interval (a, b) such that f ′(c) = 0.

Theorem 3.45 – Mean value theorem

Suppose that a function f is just continuous on [a, b] and differentiable on (a, b). Then
there exists a point c in the interval (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

• Rolle’s theorem can be used to relate the roots of f with those of f ′. If f has two
roots, then its derivative f ′ must have a root that lies between them. If f has n > 1
roots, then its derivative f ′ must have n− 1 roots that lie between them.

• The mean value theorem asserts that the instantaneous rate of change is equal to the
average rate of change at some point. For instance, a car that travels at an average
speed of 50 km/h must be travelling at exactly that speed at some point.

Example 3.46 We show that the polynomial f(x) = x3+3x+1 has a unique real root. To
prove existence using Bolzano’s theorem, we note that f is continuous with

f(−1) = −1− 3 + 1 = −3, f(0) = 1.

Since f(−1) and f(0) have opposite signs, f must have a root that lies in (−1, 0). To prove
uniqueness, suppose that f has two roots x1 < x2. Then f(x1) = f(x2) = 0 and one may
use Rolle’s theorem to get f ′(x) = 0 for some x1 < x < x2. This is a contradiction since

f ′(x) = 3x2 + 3 = 3(x2 + 1)

does not have any real roots. Thus, the given polynomial has only one real root. �

Example 3.47 We show that the polynomial f(x) = 2x3+x2−8x+2 has exactly two roots
in the interval (0, 2). To prove that these roots exist, we note that f is continuous with

f(0) = 2, f(1) = 2 + 1− 8 + 2 = −3, f(2) = 16 + 4− 16 + 2 = 6.
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In view of Bolzano’s theorem, f must then have a root in (0, 1) and another root in (1, 2),
so it has two roots in (0, 2). Suppose that it has three roots in (0, 2). Then f ′ must have
two roots in this interval by Rolle’s theorem. On the other hand, it is easy to check that

f ′(x) = 6x2 + 2x− 8 = 2(3x2 + x− 4) = 2(3x+ 4)(x− 1).

Since f ′ has only one root in (0, 2), we conclude that f has only two roots in (0, 2). �

Example 3.48 We use the mean value theorem to prove the inequality

| sin a− sin b| ≤ |a− b| for all a, b ∈ R.

When a = b, both sides are equal to zero, so the inequality certainly holds. Suppose now
that a < b, as the case b < a is similar. Using the mean value theorem, one may write

f(a)− f(b)

a− b
=

f(b)− f(a)

b− a
= f ′(c) for some a < c < b.

In this case, we have f(x) = sin x and f ′(x) = cos x, so the mean value theorem gives

| sin a− sin b|
|a− b| = | cos c| ≤ 1 =⇒ | sin a− sin b| ≤ |a− b|. �

Example 3.49 We use the mean value theorem to prove the inequality

| tan−1 a− tan−1 b| ≤ |a− b| for all a, b ∈ R.

Once again, the result is clear when a = b, so it suffices to treat the case a 6= b. Using the
mean value theorem with f(x) = tan−1 x, one finds a point c such that

|f(a)− f(b)|
|a− b| = |f ′(c)| = 1

1 + c2
≤ 1 =⇒ |f(a)− f(b)| ≤ |a− b|. �

Example 3.50 We use the mean value theorem to establish the approximation

7 +
1

8
<

√
51 < 7 +

1

7
.

Consider the function f that is defined by f(x) =
√
x+ 49. This satisfies f(0) =

√
49 = 7

and we wish to approximate f(2) =
√
51. According to the mean value theorem, one has

f(2)− f(0)

2− 0
= f ′(c) =

1

2
√
c+ 49

for some 0 < c < 2. To estimate the expression on the right hand side, we note that

0 < c < 2 =⇒ 49 < c+ 49 < 51 < 64 =⇒ 7 <
√
c+ 49 < 8.

Once we now combine the last two equations, we may easily conclude that

1

8
<

1√
c+ 49

<
1

7
=⇒ 1

8
<

√
51− 7 <

1

7
. �
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Applications of derivatives

4.1 L’Hôpital’s rule

Theorem 4.1 – L’Hôpital’s rule

Suppose that f, g are differentiable functions such that

lim
x→x0

f(x) = lim
x→x0

g(x) = L, (4.1)

where L is either 0 or ±∞ and x0 is any real number. In those cases, one has

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
, (4.2)

as long as the rightmost limit in (4.2) exists. The exact same statement is also true, if
the four limits above are replaced by either one-sided limits or limits at infinity.

• L’Hôpital’s rule may only be used for limits of the form 0/0 and ∞/∞. These are
called indeterminate forms because x/x is not necessarily 1 when x is zero or infinite.

• Some other indeterminate forms are 0 · ∞, 00, ∞0 and 1∞. These can all be reduced
to the forms 0/0 and ∞/∞ for which L’Hôpital’s rule becomes applicable.

Example 4.2 Using L’Hôpital’s rule (4.2) for the case 0/0, one easily finds that

lim
x→1

x3 + 5x− 6

2x− 2
= lim

x→1

3x2 + 5

2
=

8

2
= 4. �

Example 4.3 Using L’Hôpital’s rule (4.2) for the case ∞/∞, one similarly gets

lim
x→∞

ln x

x2
= lim

x→∞

1/x

2x
= lim

x→∞

1

2x2
= 0. �

39
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Example 4.4 We apply L’Hôpital’s rule (4.2) for the case 0/0 to show that

lim
x→0

ex − 1

x
= 1.

Since both ex − 1 and x approach zero as x → 0, L’Hôpital’s rule is applicable and so

lim
x→0

ex − 1

x
= lim

x→0

ex

1
= e0 = 1. �

Example 4.5 To compute a limit of the form 0 · ∞, one may rearrange terms and express
the product as a quotient. Let us carry out this idea to compute the limit

lim
x→0+

x ln x.

The factor x is approaching zero and the factor ln x is approaching −∞, so the given limit
has the form 0 · ∞. We move one of the factors in the denominator and we write

lim
x→0+

x ln x = lim
x→0+

ln x

1/x
.

This is now a limit of the form ∞/∞, so L’Hôpital’s rule is applicable and we get

lim
x→0+

x ln x = lim
x→0+

(ln x)′

(1/x)′
= lim

x→0+

1/x

−1/x2
= lim

x→0+
(−x) = 0. �

Example 4.6 Limits involving non-constant exponents are usually easier to treat, if one
introduces logarithms to eliminate the exponent. A typical example is the limit

L = lim
x→∞

(

1 +
a

x

)x

, (4.3)

where a is a given constant. First of all, we take logarithms of both sides to write

lnL = ln lim
x→∞

(

1 +
a

x

)x

= lim
x→∞

ln
(

1 +
a

x

)x

= lim
x→∞

x · ln
(

1 +
a

x

)

.

In this case, the factor x approaches ∞ and the factor ln(1 + a/x) approaches ln 1 = 0. We
thus have a limit of the form 0 · ∞ and we need to rearrange terms to get

lnL = lim
x→∞

ln(1 + a/x)

1/x
.

This is now a limit of the form 0/0, so one may use L’Hôpital’s rule to conclude that

lnL = lim
x→∞

ln(1 + a/x)

1/x
= lim

x→∞

(1 + a/x)−1 · (−a/x2)

−1/x2
= a · lim

x→∞

(

1 +
a

x

)

−1

.

It easily follows that lnL = a, so the original limit L is equal to L = elnL = ea. �
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4.2 Monotonicity

Definition 4.7 – Monotonicity

We say that a function f is increasing on some interval I, if

f(a) < f(b) for all points a < b in I. (4.4)

Similarly, we say that f is decreasing on some interval I, if

f(a) > f(b) for all points a < b in I. (4.5)

A function which is either increasing or decreasing is also known as monotonic.

Theorem 4.8 – Monotonicity test

Consider a function f which is differentiable on some interval I.

(a) If f ′(x) > 0 for all x ∈ I, then f is increasing on I.

(b) If f ′(x) < 0 for all x ∈ I, then f is decreasing on I.

• Plainly stated, condition (4.4) asserts that larger values of x give rise to larger values
of f(x). This condition is frequently needed to justify statements such as

a < b =⇒ ea < eb for all a, b ∈ R.

Here, the inequality is preserved because (ex)′ = ex is positive and ex is increasing.

• In a similar fashion, one may use condition (4.5) to justify statements such as

a < b =⇒ −2a > −2b for all a, b ∈ R.

Here, the inequality is reversed since (−2x)′ = −2 is negative and −2x is decreasing.

Example 4.9 We determine the intervals on which f(x) = x4 − 2x2 + 3 is increasing. In
view of the last theorem, we need to ensure that f ′(x) > 0. Let us then compute

f ′(x) = 4x3 − 4x = 4x(x2 − 1) = 4x(x− 1)(x+ 1).

To determine the sign of f ′(x), we use the factorisation above and worry about each factor
separately. The points at which f ′(x) is zero are the points x = 0, 1,−1. We list those in
order along the first row of a table and list the factors of f ′(x) in the following rows.

−1 0 1
4x − − + +

x− 1 − − − +
x+ 1 − + + +
f ′(x) − + − +
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First, consider the factor 4x. This is positive when x > 0 and it is negative when x < 0.
We may thus complete the row for the factor 4x by inserting a plus sign when x > 0 and a
minus sign when x < 0. The rows for the other factors are completed in a similar way. For
instance, the factor x− 1 is positive when x > 1, but it is negative when x < 1.

The last row corresponds to f ′(x) which is the product of the three factors. This row
is filled at the end by reading the signs vertically. When x < −1, we have three factors of
negative sign, so their product f ′(x) is negative. When −1 < x < 0, we have two negative
factors and one positive factor, so the product f ′(x) is positive. Proceeding in this manner,
one obtains the sign of f ′(x) for all values of x and one finds that

f ′(x) < 0 ⇐⇒ x ∈ (−∞,−1) ∪ (0, 1),

f ′(x) > 0 ⇐⇒ x ∈ (−1, 0) ∪ (1,+∞).

In particular, f is decreasing on (−∞,−1) ∪ (0, 1) and increasing on (−1, 0) ∪ (1,+∞). �

Example 4.10 We determine the intervals on which f(x) is increasing in the case that

f(x) = x2 · e3x.

Using both the product rule and the chain rule to differentiate this function, we get

f ′(x) = 2x · e3x + x2 · 3e3x = xe3x · (2 + 3x).

Since e3x is always positive, the points at which f ′(x) is zero are the points x = 0,−2/3. As
in the previous example, we order those along the first row of a table and list the factors
of f ′(x) in the following rows. The resulting table appears in Figure 4.1 together with the
graph of f . The table lists the signs of the factors xe3x and 2+ 3x which also determine the
sign of their product f ′(x). According to the table, one has

f ′(x) < 0 ⇐⇒ x ∈ (−2/3, 0),

f ′(x) > 0 ⇐⇒ x ∈ (−∞,−2/3) ∪ (0,+∞).

In particular, f is decreasing on (−2/3, 0) and increasing on (−∞,−2/3) ∪ (0,+∞). �

-3 -2 -1

1

8

−2/3 0
xe3x − − +
2 + 3x − + +
f ′(x) + − +

Figure 4.1: The graph of f(x) = x2e3x.
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Example 4.11 We study the monotonicity of f(x) = x2 ln x. The domain of this function
consists of all points x > 0 and one may use the product rule to find that

f ′(x) = 2x ln x+ x2 · 1
x
= 2x ln x+ x = x(2 ln x+ 1).

Since x > 0 by above, the sign of f ′(x) coincides with the sign of 2 ln x+ 1 and

f ′(x) > 0 ⇐⇒ 2 ln x+ 1 > 0 ⇐⇒ ln x > −1/2 ⇐⇒ x > e−1/2.

In other words, f is increasing on (e−1/2,∞) and decreasing on (0, e−1/2). �

Example 4.12 We determine the intervals on which f(x) is increasing in the case that

f(x) =
4x− 1

x2 + 5
.

First of all, we use the quotient rule to compute its derivative

f ′(x) =
4(x2 + 5)− 2x(4x− 1)

(x2 + 5)2
=

−4x2 + 2x+ 20

(x2 + 5)2
= −2(2x2 − x− 10)

(x2 + 5)2
.

The quadratic in the numerator has roots x1 = −2 and x2 = 5/2, so one may factor to write

f ′(x) = −4(x− x1)(x− x2)

(x2 + 5)2
= −4(x+ 2)(x− 5/2)

(x2 + 5)2
.

Since the denominator is obviously positive, the sign of f ′(x) coincides with the sign of its
numerator. One may determine this sign, as in the table of Figure 4.2, by looking at each
of the factors separately. The overall conclusion of the table is that

f ′(x) < 0 ⇐⇒ x ∈ (−∞,−2) ∪ (5/2,+∞),

f ′(x) > 0 ⇐⇒ x ∈ (−2, 5/2).

In other words, f is decreasing on (−∞,−2) ∪ (5/2,+∞) and increasing on (−2, 5/2). �

-5 -3 -1 1 3 5

-1

1

−2 5/2
−4(x+ 2) + − −
x− 5/2 − − +
f ′(x) − + −

Figure 4.2: The graph of f(x) =
4x− 1

x2 + 5
.
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4.3 Concavity

Definition 4.13 – Concavity

We say that a function f is concave up on some interval I, if

f(x) <
f(b)− f(a)

b− a
· (x− a) + f(a) for all points a < x < b in I. (4.6)

Similarly, we say that f is concave down on some interval I, if

f(x) >
f(b)− f(a)

b− a
· (x− a) + f(a) for all points a < x < b in I. (4.7)

Definition 4.14 – Inflection point

A function f has an inflection point at x0, if the concavity of f changes at that point,
namely if f is concave up on one side of x0 and concave down on the other.

Theorem 4.15 – Concavity test

Consider a function f which is twice differentiable on some interval I.

(a) If f ′′(x) > 0 for all x ∈ I, then f is concave up on I.

(b) If f ′′(x) < 0 for all x ∈ I, then f is concave down on I.

• The condition (4.6) for a function f to be concave up requires the graph of f to lie
below the line that connects the points (a, f(a)) and (b, f(b)). Intuitively speaking,
this condition holds on intervals on which the graph of f has a shape like ∪.

• The condition (4.7) for a function f to be concave down has a similar interpretation
and it holds on intervals on which the graph of f has a shape like ∩.

Example 4.16 Consider the quadratic f(x) = ax2 + bx + c, where a, b, c are some given
constants and a 6= 0. In this case, one has f ′(x) = 2ax + b and f ′′(x) = 2a. When a > 0,
the function is concave up at all points. When a < 0, it is concave down at all points. �

Example 4.17 We determine the intervals on which f(x) = xe−x is concave up. In view of
the last theorem, we need to ensure that f ′′(x) > 0. Let us then compute

f ′(x) = e−x + x(e−x)′ = e−x − xe−x,

f ′′(x) = −e−x − e−x − x(e−x)′ = −2e−x + xe−x = (x− 2)e−x.

Since the exponential factor e−x is always positive, one finds that

f ′′(x) < 0 ⇐⇒ x < 2,

f ′′(x) > 0 ⇐⇒ x > 2.
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In other words, f is concave down on (−∞, 2) and concave up on (2,+∞). The graph of
this function appears in Figure 4.3 and it includes an inflection point at x = 2. �

Example 4.18 To study the concavity of the cubic f(x) = x3 − 3x2, we compute

f ′(x) = 3x2 − 6x =⇒ f ′′(x) = 6x− 6 = 6(x− 1).

This implies that f is concave down on (−∞, 1) and concave up on (1,+∞). The graph of
this function appears in Figure 4.3 and it includes an inflection point at x = 1. �

1 2 3 4 5
-1 1 2 3

-3

-1

1

3

Figure 4.3: The graphs of f(x) = xe−x and f(x) = x3 − 3x2, respectively.

Example 4.19 Consider the function f which is defined by f(x) = ln(x2 + 4). Since

f ′(x) =
2x

x2 + 4

by the chain rule, one may use the quotient rule to compute the second derivative

f ′′(x) =
2(x2 + 4)− 2x · 2x

(x2 + 4)2
=

8− 2x2

(x2 + 4)2
=

2(2− x)(2 + x)

(x2 + 4)2
.

The sign of this expression can be determined using the table in Figure 4.4. According to
the table, f is concave up on (−2, 2) and concave down on (−∞,−2) ∪ (2,+∞). �

-4 -2 2 4

1

2

3

4

−2 2
2− x + + −
2 + x − + +
f ′′(x) − + −

Figure 4.4: The graph of f(x) = ln(x2 + 4).
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