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6.3 Reduction formulas

• A reduction formula expresses an integral In that depends on some integer n in terms
of another integral Im that involves a smaller integer m. If one repeatedly applies this
formula, one may then express In in terms of a much simpler integral.

Example 6.10 We use integration by parts to establish the reduction formula
∫

sinn x dx = − 1

n
sinn−1 x · cos x+

n− 1

n

∫

sinn−2 x dx. (6.4)

If we take dv = sin x dx, then we have v = − cos x and we may integrate by parts with

u = sinn−1 x, du = (n− 1) sinn−2 x · cos x.

Using the fact that sin2 x+ cos2 x = 1, one may thus conclude that
∫

sinn x dx = − sinn−1 x · cos x+ (n− 1)

∫

sinn−2 x · cos2 x dx

= − sinn−1 x · cos x+ (n− 1)

∫

sinn−2 x · (1− sin2 x) dx

= − sinn−1 x · cos x+ (n− 1)

∫

sinn−2 x dx+ (1− n)

∫

sinn x dx.

Here, the rightmost integral coincides with the original integral on the left. Once we now
rearrange terms, we end up with n copies of the integral and equation (6.4) follows. �

Example 6.11 We use a reduction formula to compute the integral I3 in the case that

In =

∫

xne2x dx.

If we take u = xn and dv = e2x dx, then du = nxn−1 dx and v = 1

2
e2x, so one has

In =
1

2
xne2x − n

2

∫

xn−1e2x dx =
1

2
xne2x − n

2
· In−1. (6.5)

We now apply the last formula repeatedly to determine I3. According to the formula,

I3 =
1

2
x3e2x − 3

2
· I2 =

1

2
x3e2x − 3

2
·
[

1

2
x2e2x − I1

]

=
1

2
x3e2x − 3

2
·
[

1

2
x2e2x − 1

2
xe2x +

1

2
· I0

]

=
1

2
x3e2x − 3

4
x2e2x +

3

4
xe2x − 3

4

∫

e2x dx

=
1

2
x3e2x − 3

4
x2e2x +

3

4
xe2x − 3

8
e2x + C. �
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Example 6.12 We use integration by parts to establish the reduction formula
∫

secn x dx =
1

n− 1
secn−2 x · tan x+

n− 2

n− 1

∫

secn−2 x dx. (6.6)

In this case, we note that (tan x)′ = sec2 x and we write the given integral as
∫

secn x dx =

∫

secn−2 x · sec2 x dx.

If we take dv = sec2 x dx, then we have v = tan x and we may integrate by parts with

u = secn−2 x, du = (n− 2) secn−3 x · secx tan x = (n− 2) secn−2 x · tan x.

Using the fact that 1 + tan2 x = sec2 x, one may thus establish the identity
∫

secn x dx = secn−2 x · tan x− (n− 2)

∫

secn−2 x · tan2 x dx

= secn−2 x · tan x− (n− 2)

∫

secn−2 x · (sec2 x− 1) dx

= secn−2 x · tan x− (n− 2)

∫

secn x dx+ (n− 2)

∫

secn−2 x dx.

Since the integral on the left hand side also appears on the right hand side, this gives

(n− 1)

∫

secn x dx = secn−2 x · tan x+ (n− 2)

∫

secn−2 x dx.

In particular, the reduction formula (6.6) follows by dividing both sides with n− 1. �

Example 6.13 Let a 6= 0 be some given constant and consider the integral

In =

∫

dx

(x2 + a)n
=

∫

(x2 + a)−n dx.

If we take u = (x2 + a)−n and dv = dx, then we may integrate by parts to find that

In = x(x2 + a)−n + n

∫

x(x2 + a)−n−1 · 2x dx.

Let us now rearrange terms and express the last equation in the form

In = x(x2 + a)−n + 2n

∫

x2 + a− a

(x2 + a)n+1
dx

= x(x2 + a)−n + 2n

∫

dx

(x2 + a)n
− 2na

∫

dx

(x2 + a)n+1
.

The integrals on the right hand side have the same form as the original integral, so

In = x(x2 + a)−n + 2n · In − 2na · In+1.

Rearranging terms once again, one may thus establish the reduction formula

2na · In+1 = (2n− 1) · In + x(x2 + a)−n. �
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6.4 Trigonometric integrals

Theorem 6.14 – Powers of sine and cosine

Consider the integral
∫

sinm x · cosn x dx for any non-negative integers m,n.

(a) When n is odd, one may compute this integral using the substitution u = sin x.

(b) When m is odd, one may compute this integral using the substitution u = cos x.

(c) When m,n are even, one may use the half-angle formulas to simplify the integral.

Theorem 6.15 – Powers of secant and tangent

Consider the integral
∫

secm x · tann x dx for any non-negative integers m,n.

(a) When n is odd, one may compute this integral using the substitution u = secx.

(b) When m is even, one may compute this integral using the substitution u = tan x.

(c) When m is odd and n is even, one may reduce the integrand to powers of sec x.

• The three cases that arise in Theorem 6.14 are closely related to the identities

(sin x)′ = cos x, (cos x)′ = − sin x, sin2 x+ cos2 x = 1.

If one uses the substitution u = sin x, then one may express any even power of cosine
in terms of u2, but also needs a copy of cosine for du = cos x dx. This yields an odd
number of cosines, so the substitution u = sin x will only help when n is odd.

• The last case that arises in Theorem 6.14 requires the half-angle formulas

sin2 θ =
1− cos(2θ)

2
, cos2 θ =

1 + cos(2θ)

2
. (6.7)

These formulas are helpful for reducing the even powers of sine and cosine.

• The three cases that arise in Theorem 6.15 are closely related to the identities

(secx)′ = sec x tan x, (tan x)′ = sec2 x, 1 + tan2 x = sec2 x.

These imply that an odd number of tangents is needed to substitute u = sec x, while
an even number of secants is needed to substitute u = tan x.

Example 6.16 We use the substitution u = sin x to compute the integral

∫

sin4 x · cos5 x dx.
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In this case, we have du = cos x dx and also sin2 x+ cos2 x = 1, so
∫

sin4 x · cos5 x dx =

∫

sin4 x · (1− sin2 x)2 · cos x dx =

∫

u4(1− u2)2 du

=

∫

u4(1− 2u2 + u4) du =

∫

(u4 − 2u6 + u8) du

=
u5

5
− 2u7

7
+

u9

9
+ C =

sin5 x

5
− 2 sin7 x

7
+

sin9 x

9
+ C. �

Example 6.17 We use the half-angle formulas to simplify and compute the integral
∫

sin2 x · cos2 x dx.

Since the exponents are both even, one needs to express the integrand in the form

sin2 x · cos2 x =
1− cos(2x)

2
· 1 + cos(2x)

2
=

1

4
·
[

1− cos2(2x)
]

=
1

4
·
[

1− 1 + cos(4x)

2

]

=
1

8
· [1− cos(4x)] .

Once we now integrate both sides of this equation, we may easily conclude that
∫

sin2 x · cos2 x dx =
1

8

[

x− sin(4x)

4

]

+ C =
x

8
− sin(4x)

32
+ C. �

Example 6.18 We use an appropriate substitution to compute the integral
∫

sec4 x · tan2 x dx.

If we let u = tan x, then du = sec2 x dx and also sec2 x = 1 + tan2 x = 1 + u2, so one has
∫

sec4 x · tan2 x dx =

∫

sec2 x · tan2 x · sec2 x dx =

∫

(1 + u2) · u2 du

=

∫

(u2 + u4) du =
u3

3
+

u5

5
+ C =

tan3 x

3
+

tan5 x

5
+ C. �

Example 6.19 We use an appropriate substitution to compute the integral
∫

sin3 x

cos8 x
dx.

Since the cosine appears in the denominator, it is better to first simplify and write
∫

sin3 x

cos8 x
dx =

∫

sin3 x

cos3 x
· 1

cos5 x
dx =

∫

tan3 x · sec5 x dx.

Let us take u = sec x. Since du = sec x tan x dx and also u2 = sec2 x = tan2 x+ 1, we get
∫

sin3 x

cos8 x
dx =

∫

tan2 x · sec4 x · sec x tan x dx =

∫

(u2 − 1) · u4 du

=

∫

(u6 − u4) du =
u7

7
− u5

5
+ C =

sec7 x

7
− sec5 x

5
+ C. �



Techniques of integration 71 Trigonometric substitutions

6.5 Trigonometric substitutions

• Trigonometric substitutions are sometimes needed to simplify integrals that contain
expressions of the form

√
a2 − x2,

√
x2 − a2 and

√
x2 + a2 for some a > 0. In each of

these cases, one naturally seeks a substitution to simplify the square root.

• The three most common trigonometric substitutions are listed in the table below.

Expression Substitution Simplification√
a2 − x2 x = a sin θ

√
a2 − x2 = a cos θ, dx = a cos θ dθ√

a2 + x2 x = a tan θ
√
a2 + x2 = a sec θ, dx = a sec2 θ dθ√

x2 − a2 x = a sec θ
√
x2 − a2 = a| tan θ|, dx = a sec θ tan θ dθ

• In the first case, one has a2 − x2 = a2 − a2 sin2 θ = a2 cos2 θ and
√
a2 − x2 = a cos θ.

This is because θ = sin−1(x/a) lies between −π/2 and π/2, so cos θ is non-negative.

Example 6.20 We use a trigonometric substitution to compute the integral
∫

dx√
a2 − x2

, a > 0.

If we let x = a sin θ, then a2 − x2 = a2 − a2 sin2 θ = a2 cos2 θ and also dx = a cos θ dθ, so
∫

dx√
a2 − x2

=

∫

a cos θ dθ

a cos θ
=

∫

dθ = θ + C = sin−1
x

a
+ C. �

Example 6.21 We use a trigonometric substitution to compute the integral
∫

dx

x2 + a2
, a > 0.

If we let x = a tan θ, then x2 + a2 = a2 tan2 θ + a2 = a2 sec2 θ and also dx = a sec2 θ dθ, so
∫

dx

x2 + a2
=

∫

a sec2 θ dθ

a2 sec2 θ
=

1

a

∫

dθ =
1

a
θ + C =

1

a
tan−1

x

a
+ C. �

Example 6.22 We use a trigonometric substitution to compute the integral
∫

x2 dx√
4− x2

.

If we let x = 2 sin θ, then 4− x2 = 4− 4 sin2 θ = 4 cos2 θ and also dx = 2 cos θ dθ, so
∫

x2 dx√
4− x2

=

∫

4 sin2 θ · 2 cos θ dθ
2 cos θ

=

∫

4 sin2 θ dθ = 2

∫

[1− cos(2θ)] dθ

= 2θ − sin(2θ) + C = 2θ − 2 sin θ · cos θ + C.

It remains to express this equation in terms of x = 2 sin θ. Since θ = sin−1 x

2
, we get

∫

x2 dx√
4− x2

= 2 sin−1
x

2
− 2 · x

2
·
√

1− x2

4
+ C = 2 sin−1

x

2
− x

2

√
4− x2 + C. �
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6.6 Partial fractions

Definition 6.23 – Proper rational function

A proper rational function is a quotient of two polynomials P (x)/Q(x) such that the
degree of the numerator P (x) is smaller than the degree of the denominator Q(x).

Theorem 6.24 – Partial fractions

Suppose that f(x) is a proper rational function whose denominator is the product of
relatively prime polynomials. Then f(x) can be expressed as a sum of proper rational
functions whose denominators are these relatively prime polynomials.

• Two polynomials are relatively prime, if they do not have any common divisor other
than constant factors. For instance, (x+ 1)(x− 1) and x2(x+ 3) are relatively prime,
whereas x(x− 1) and x2(x+ 3) have a non-constant factor in common.

Example 6.25 We use partial fractions to compute the integral

∫

x2 + 3x− 4

(x2 + 1)(x+ 1)
dx.

According to the last theorem, the integrand can be expressed in the form

x2 + 3x− 4

(x2 + 1)(x+ 1)
=

Ax+ B

x2 + 1
+

C

x+ 1

for some constants A,B,C that need to be determined. Clearing denominators gives

x2 + 3x− 4 = (Ax+B)(x+ 1) + C(x2 + 1)

and one may look at some suitable choices of x to find that

x = −1, 0, 1 =⇒ −6 = 2C, −4 = B + C, 0 = 2A+ 2B + 2C.

Solving these equations, we now get C = −3, B = −1 and A = 4, which means that

∫

x2 + 3x− 4

(x2 + 1)(x+ 1)
dx =

∫

4x

x2 + 1
dx−

∫

1

x2 + 1
dx−

∫

3

x+ 1
dx.

The two rightmost integrals are rather easy to compute, and so is the integral
∫

4x

x2 + 1
dx =

∫

2 du

u
= 2 ln |u|+ C = 2 ln(x2 + 1) + C,

if one substitutes u = x2 + 1. In view of the last two equations, we must thus have

∫

x2 + 3x− 4

(x2 + 1)(x+ 1)
dx = 2 ln(x2 + 1)− tan−1 x− 3 ln |x+ 1|+ C. �
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Example 6.26 We use partial fractions to compute the integral
∫

x3 + 3x2 + 5

x(x− 1)
dx.

This rational function is not proper because its numerator is cubic and its denominator is
only quadratic. Thus, one needs to first use division of polynomials to write

x3 + 3x2 + 5

x(x− 1)
=

x3 + 3x2 + 5

x2 − x
= x+ 4 +

4x+ 5

x(x− 1)
.

Since the rightmost fraction is proper, one may use partial fractions to express it as

4x+ 5

x(x− 1)
=

A

x
+

B

x− 1
=⇒ 4x+ 5 = A(x− 1) + Bx.

Setting x = 0 gives 5 = −A and setting x = 1 gives 9 = B. It easily follows that

x3 + 3x2 + 5

x(x− 1)
= x+ 4 +

A

x
+

B

x− 1
= x+ 4− 5

x
+

9

x− 1
.

Once we now integrate this equation term by term, we may finally conclude that
∫

x3 + 3x2 + 5

x(x− 1)
dx =

x2

2
+ 4x− 5 ln |x|+ 9 ln |x− 1|+ C. �

Example 6.27 We use a substitution and partial fractions to compute the integral
∫

e5x dx

e2x − 1
.

If we take u = ex, then du = ex dx and the given integral takes the form
∫

e5x dx

e2x − 1
=

∫

e4x · ex dx
e2x − 1

=

∫

u4 du

u2 − 1
.

This is not a proper rational function, so one needs to first use division to write
∫

e5x dx

e2x − 1
=

∫

u4 − 1 + 1

u2 − 1
du =

∫
(

u2 + 1 +
1

u2 − 1

)

du. (6.8)

Let us merely focus on the proper rational function. Using partial fractions, we get

1

u2 − 1
=

A

u− 1
+

B

u+ 1
=⇒ 1 = A(u+ 1) + B(u− 1).

When u = 1, this gives 1 = 2A. When u = −1, it gives 1 = −2B. In particular, one has

u2 + 1 +
1

u2 − 1
= u2 + 1 +

A

u− 1
+

B

u+ 1
= u2 + 1 +

1/2

u− 1
− 1/2

u+ 1

and each of these terms can be easily integrated. Returning to (6.8), we conclude that
∫

e5x dx

e2x − 1
=

1

3
u3 + u+

1

2
ln |u− 1| − 1

2
ln |u+ 1|+ C

=
1

3
e3x + ex +

1

2
ln |ex − 1| − 1

2
ln(ex + 1) + C. �



Chapter 7

Sequences and series

7.1 Convergence of sequences

Definition 7.1 – Convergence of sequences

A sequence is a function that is defined on the set N of natural numbers. Its values are
usually denoted by writing an for each n ∈ N. We say that the sequence {an} converges,
if an approaches a finite limit as n→∞. Otherwise, we say that {an} diverges.

Definition 7.2 – Monotonicity

A sequence {an} is called monotonic, if it is either increasing, in which case an ≤ an+1

for each n ∈ N, or else decreasing, in which case an ≥ an+1 for each n ∈ N.

Theorem 7.3 – Monotonic and bounded

If a sequence is monotonic and bounded, then the sequence is also convergent.

� When a precise formula for an is known, one may use that formula to compute the
limit of an and prove convergence. However, a precise formula is not always available.

Example 7.4 We show that each of the following sequences converges.

an =

√
8n2 + 3

2n2 + 5
, bn =

3 + sinn

n2
, cn =

(
1 +

1

n

)n

.

Since the limit of a square root is the square root of the limit, it should be clear that

lim
n→∞

8n2 + 3

2n2 + 5
= lim

n→∞

8n2

2n2
= 4 =⇒ lim

n→∞
an =

√
4 = 2.

The limit of the second sequence is zero because 2/n2 ≤ bn ≤ 4/n2 for each n ≥ 1. This
means that bn is squeezed between two sequences that converge to zero. Finally, one has

cn =

(
1 +

1

n

)n

=⇒ ln cn = n · ln
(

1 +
1

n

)
=

ln(1 + 1/n)

1/n
.

74
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This is a limit of the form 0/0, so one may use L’Hôpital’s rule to conclude that

lim
n→∞

ln cn = lim
n→∞

(1 + 1/n)−1 · (1/n)′

(1/n)′
= 1 =⇒ lim

n→∞
cn = e1 = e. �

Example 7.5 There are two different ways of checking that an = n/(n + 1) is increasing.
First of all, one may use derivatives. If we define f(x) = x/(x+ 1) for each x ≥ 1, then

f ′(x) =
(x+ 1)− x

(x+ 1)2
=

1

(x+ 1)2
> 0.

This makes f(x) increasing for all x ≥ 1 and thus an is increasing for all n ≥ 1. It is also
possible to check this directly. To show that an is increasing, one needs to show that

an ≤ an+1 ⇐⇒ n

n+ 1
≤ n+ 1

n+ 2
⇐⇒ n2 + 2n ≤ n2 + 2n+ 1.

Since the rightmost inequality is obviously true, the leftmost inequality holds as well. �

Example 7.6 We show that an = 2n

n!
is decreasing for all n ≥ 1. In this case, we have

an ≥ an+1 ⇐⇒ 2n

n!
≥ 2n+1

(n+ 1)!
⇐⇒ n+ 1 ≥ 2.

Since the rightmost inequality is obviously true, the leftmost inequality holds as well. �

Example 7.7 We find the limit of the sequence {an} which is defined by a1 = 1 and

an+1 =
√

2an for each n ≥ 1.

To show that this sequence converges, we shall first show that

1 ≤ an ≤ an+1 ≤ 2 for each n ≥ 1. (7.1)

When n = 1, this statement asserts that 1 ≤ 1 ≤
√

2 ≤ 2, so it is certainly true. Suppose
that it is true for some n. Multiplying by 2 and taking square roots, we then find that

2 ≤ 2an ≤ 2an+1 ≤ 4 =⇒
√

2 ≤
√

2an ≤
√

2an+1 ≤ 2

=⇒ 1 ≤ an+1 ≤ an+2 ≤ 2.

In particular, the statement holds for n + 1 as well, so it actually holds for all n ∈ N. This
shows that the given sequence is monotonic and bounded, hence also convergent; denote its
limit by L. Using the definition of the sequence, one may then argue that

an+1 =
√

2an =⇒ lim
n→∞

an+1 = lim
n→∞

√
2an =⇒ L =

√
2L.

This gives L2 = 2L, so either L = 0 or else L = 2. On the other hand, we must also have

1 ≤ an ≤ 2 =⇒ 1 ≤ lim
n→∞

an ≤ 2 =⇒ 1 ≤ L ≤ 2

because of equation (7.1). We conclude that the limit of the sequence is L = 2. �


