Techniques of integration 67 Reduction formulas

6.3 Reduction formulas

e A reduction formula expresses an integral I,, that depends on some integer n in terms
of another integral I,,, that involves a smaller integer m. If one repeatedly applies this
formula, one may then express [, in terms of a much simpler integral.

Example 6.10 We use integration by parts to establish the reduction formula

1 n—1
/sinn rdr = ——sin" 'z -cosx + /sin"2 xd. (6.4)
n n
If we take dv = sinx dx, then we have v = — cosx and we may integrate by parts with
u = sin"" 'z, du= (n—1)sin" 21 - cos .

Using the fact that sin® z + cos? z = 1, one may thus conclude that
/sin” vdr = —sin" 'x-cosx+ (n—1) /sin”2 x - cos® x dx
= —sin" 'z -cosz + (n—1) /sin”_2 z-(1—sin*z)de
= —sin" 'z -cosz+ (n—1) /sin”_2 rdr+ (1 —n) /Sin"xda:.

Here, the rightmost integral coincides with the original integral on the left. Once we now
rearrange terms, we end up with n copies of the integral and equation (6.4) follows. U

Example 6.11 We use a reduction formula to compute the integral I35 in the case that

I, = /x"ezx dx.

If we take v = 2™ and dv = €*® dz, then du = nz" ' dz and v = }e*”, so one has

1 1
I, = = 2"e* — n /x”_le% dx = 3 zme* — — 1, . (6.5)

2 2

NS

We now apply the last formula repeatedly to determine I3. According to the formula,

1 3 1 3 |1
Iy=—a%e® — 2. [, = — 2% — = . | 2% — [

2 2 2 2 |2

1 3 |1 1
251‘3623;—5'|:§[E262$—§{E62x+§'10:|

1 3 3 3
—5:1:3@2‘”—Z—lx262w+é—lxe2”—1/62zdx

1 3 3 3
:5:133629”—Zﬁe%—kzxeh—ge%—l—a ]



Techniques of integration 68 Reduction formulas

Example 6.12 We use integration by parts to establish the reduction formula

1 -2
/sec“ vdr = : sec™ 2z - tanz + — n /sec"_2 zd. (6.6)

n — n —

In this case, we note that (tanz)’ = sec?

/sec“ rdr = /sec”2 x - sec? xdr.

If we take dv = sec? x dz, then we have v = tan z and we may integrate by parts with

x and we write the given integral as

u = sec" *z, du= (n—2)sec” 3z -secrtanx = (n — 2)sec” *x - tan x.

Using the fact that 1 + tan? x = sec? z, one may thus establish the identity
/sec” rdr =sec" ?x-tanx — (n — 2) /secn_2 z - tan® z dx
=sec" ?x-tanx — (n — 2) /sec”_2 z - (sec?z — 1) dx
=sec" ?x-tanx — (n — 2) /sec” rdx + (n —2) /sec”2 xd.
Since the integral on the left hand side also appears on the right hand side, this gives
(n—1) /sec” rvdr =sec" ?x-tanx + (n — 2) /sec"2 zd.

In particular, the reduction formula (6.6) follows by dividing both sides with n — 1. O

Example 6.13 Let a # 0 be some given constant and consider the integral

]n:/(xngiz)n:/(era)_”d:p.

If we take u = (2% + a)™™ and dv = dx, then we may integrate by parts to find that
I, =x(z*+a)™" + n/x(azz +a)™" . 22 d.

Let us now rearrange terms and express the last equation in the form

2
- 9 n r*+a—a

dx dz
:x(x2+a)_”+2n/m—2na/m.
The integrals on the right hand side have the same form as the original integral, so
I, =x(z*+a) ™ +2n-I, — 2na- L.
Rearranging terms once again, one may thus establish the reduction formula

2na - Iy = (2n — 1) - I, + z(2® +a) ™™ O
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6.4 Trigonometric integrals

/Theorem 6.14 — Powers of sine and cosine

Consider the integral [ sin™ z - cos™ z dz for any non-negative integers m, n.

(a) When n is odd, one may compute this integral using the substitution u = sin x.

.

(b) When m is odd, one may compute this integral using the substitution u = cos .

(¢) When m,n are even, one may use the half-angle formulas to simplify the integral.

(" Theorem 6.15 — Powers of secant and tangent

~

Consider the integral [sec™ x -tan™ z dx for any non-negative integers m, n.

(a) When n is odd, one may compute this integral using the substitution u = secz.
(b) When m is even, one may compute this integral using the substitution u = tanz.

(¢) When m is odd and n is even, one may reduce the integrand to powers of sec .

e The three cases that arise in Theorem 6.14 are closely related to the identities

(sinz)" = cosz, (cosz)' = —sinz, sin?x + cos’x = 1.

If one uses the substitution u = sin z, then one may express any even power of cosine
in terms of u?, but also needs a copy of cosine for du = cosz dx. This yields an odd

number of cosines, so the substitution v = sin x will only help when n is odd.
e The last case that arises in Theorem 6.14 requires the half-angle formulas

1 — cos(20) 02 — 1 + cos(20)

sin? 6§ = , c
2 2

These formulas are helpful for reducing the even powers of sine and cosine.

e The three cases that arise in Theorem 6.15 are closely related to the identities

(secx) = secxtanw, (tanz) = sec? z, 1 +tan® x = sec® x.

(6.7)

These imply that an odd number of tangents is needed to substitute u = sec z, while

an even number of secants is needed to substitute v = tan z.

Example 6.16 We use the substitution v = sinz to compute the integral

/Sin4 x - cos’ x dx.
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In this case, we have du = cos x dx and also sin?z + cos?z = 1, so
/sin4:c -cos” v dx = /sin4a: (1 —sin®z)? - cosxdr = /u4(1 —u?)?du

:/u4(1—2u2+u4)du:/(u4—2u6—|—u8)du

w o 2uT sinz  2sin’z  sin’x
- 2= . 0= — C. U
57 tg9 Tt 5 7 Tt 7

Example 6.17 We use the half-angle formulas to simplify and compute the integral
/sin2 x - cos® x dx.

Since the exponents are both even, one needs to express the integrand in the form

, 1 —cos(2z) 1+4cos(2z) 1
2 2, _ 2
sin®z - cos”x = 5 : 5 —Z-[l—cos (22)]
1 1 + cos(4x) 1
— - 1= 2 2 — cos(4a)] .
1 [ 5 } 3 [1 — cos(4x)]
Once we now integrate both sides of this equation, we may easily conclude that
_ 1 sin(4x) x  sin(4x)
2 2
. der=- |z — —= C=-——+C. O
/smxcosxx 8[:1: 1 ]—l— 3 39 +

Example 6.18 We use an appropriate substitution to compute the integral
/sec4 x - tan® z dx.
If we let u = tanx, then du = sec? x dr and also sec?z = 1 + tan? 2 = 1 + u?, so one has
/secA‘:E-taandx = /sec2x-tan2a: sec’xdr = /(1 +u?) - u’ du

3 5 t 3 t 5
:/(u2+u4)du:%+%+02 ar;ijaI;erC. O

Example 6.19 We use an appropriate substitution to compute the integral

sin®
S dx.
cos® x

Since the cosine appears in the denominator, it is better to first simplify and write

.. 3 103
sin® x sin® x 1
- dr = — = dr = [ tan®z - sec® z dz.
cos® x cos’xr cos’x

2

r =tan’z + 1, we get

.3
sin®
/ dx:/tanza:-sec4x~secxtanxdx:/(u2—1)~u4du

cos® x
7 5 7 5
p 4 U U sec'x  sec’x
/(u u”) du - 3 + - 5 +

Let us take u = secz. Since du = sec z tan z dx and also u? = sec
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6.5 Trigonometric substitutions

e Trigonometric substitutions are sometimes needed to simplify integrals that contain
expressions of the form va?2 — 22, V22 — a? and V22 + a2 for some a > 0. In each of
these cases, one naturally seeks a substitution to simplify the square root.

e The three most common trigonometric substitutions are listed in the table below.

Expression ‘ Substitution ‘ Simplification

Va2 —x2 |z =asiné Va2 — 22 = acosb, dxr = acosf db
va2+ 22 |x=atanl | Va?+ 22 = asecd, dx = asec? 0 db
Vat—a? |x=asecl |va?—a®=altanb|, dx = asecftan 6 db

e In the first case, one has a®> — 22 = a? — a?sin?6 = a?cos? and Va2 — 22 = acosé.
This is because = sin™*(z/a) lies between —7/2 and 7/2, so cos @ is non-negative.

Example 6.20 We use a trigonometric substitution to compute the integral

dx
3 a > 0.
/\/@2—:1:2
If we let © = asinf, then a® — 22 = a® — a®sin? 0 = a® cos? 0 and also dx = acosf db, so
acosf df x
df =6 =sin ' = 4 C. O
/m /acos@ / + C =sin a+C’

Example 6.21 We use a trigonometric substitution to compute the integral

dx 0

If we let © = atanf, then 22 + a? = a®>tan? 0 + a® = a?sec? § and also dx = asec? 0 df, so

2 1 1 1
/d_ﬁf:/w:_/d9:_9+g:_tan—1£+a B
a a a

22 4 a? a?sec? a

Example 6.22 We use a trigonometric substitution to compute the integral
22 dx
If we let = 2sin6, then 4 — 22 = 4 — 4sin?6 = 4 cos® 0 and also dx = 2 cosf db, so

2d 4sin®6 - 2 cos O df
T o con :/4sin29d9:2/[1—cos(29)] do
V4 — a? 2cosf
=260 —sin(20) + C =26 — 2sin 6 - cosf + C.

It remains to express this equation in terms of z = 2sin . Since = sin™* 5, we get

22 dz LT x x? [T
e B L = _ Tt A 2
— = 2sin 5 2. ol 1 1 +C =2sin~ 5 3 4—a2+C. ]
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6.6 Partial fractions

/Deﬁnition 6.23 — Proper rational function

~

degree of the numerator P(x) is smaller than the degree of the denominator Q(x).

A proper rational function is a quotient of two polynomials P(z)/Q(x) such that the

/

/Theorem 6.24 — Partial fractions

~

functions whose denominators are these relatively prime polynomials.

Suppose that f(x) is a proper rational function whose denominator is the product of
relatively prime polynomials. Then f(x) can be expressed as a sum of proper rational

/

e Two polynomials are relatively prime, if they do not have any common divisor other
than constant factors. For instance, (x 4+ 1)(z — 1) and 2%(z + 3) are relatively prime,

whereas z(z — 1) and z?(x + 3) have a non-constant factor in common.

Example 6.25 We use partial fractions to compute the integral

/ 2?4+ 3x—4
dx
(x2+1)(x+1)

According to the last theorem, the integrand can be expressed in the form

22+ 3x—4 _Ax—i—B C

(2 +1)(x+1) 2241 +a:+1

for some constants A, B, C' that need to be determined. Clearing denominators gives
2 +3z—4=(Az+B)(z+ 1)+ C(a* + 1)
and one may look at some suitable choices of x to find that
r=-1,0,1 = —6=2C, —4=B+C, 0=2A+2B+2C.
Solving these equations, we now get C' = —3, B = —1 and A = 4, which means that
2 _
/(xa;—:Ll?))fx—i—éll) dx:/xf—ildx_/x?#ﬂdx_/xildm

The two rightmost integrals are rather easy to compute, and so is the integral

4 2d
/ = dr= [ 2= =2l u| +C = 2In(a® + 1) + C,
e +1 U

if one substitutes © = 2% 4+ 1. In view of the last two equations, we must thus have

22+ 3x—4
dr =2In(z?>+1) —tan 'z —3Inlz + 1|+ C.
/(1:2+1)(a:+1) ( ) | |
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Example 6.26 We use partial fractions to compute the integral
/ ¥+ 32+ 5
z(z —1)
This rational function is not proper because its numerator is cubic and its denominator is
only quadratic. Thus, one needs to first use division of polynomials to write

34322 +5 23 +322+5 4 +5
- —r4d+—
x(x—1) 2 —x z(x —1)

Since the rightmost fraction is proper, one may use partial fractions to express it as
dr + 5 A B

2w =1) e T+ (x—1)+ Bz

dz.

Setting x = 0 gives 5 = —A and setting x = 1 gives 9 = B. It easily follows that

3+ 322 +5 A B 5 9
N A [ R Ry Y B
z(x —1) x w-—1

r x—1
Once we now integrate this equation term by term, we may finally conclude that
/ 23+ 322 +5 x?

dz =

dr — 51 91 — 1]+ C. U
P pa— 5 + 4x nlx|+9n|z—1|+

Example 6.27 We use a substitution and partial fractions to compute the integral

/ e dx
e —1°

If we take u = €, then du = €” dx and the given integral takes the form

/65‘”0[3: _/e“-e‘”dx_/ ut du
e2r —1 ez —1 | u2—1’

This is not a proper rational function, so one needs to first use division to write

e dx ut —1+1 9 1
/?M_l—/iutq.du—/(u+1+uLJ>dw (6.8)

Let us merely focus on the proper rational function. Using partial fractions, we get
1 A B
@1 a-1 u+l
When u = 1, this gives 1 = 2A. When u = —1, it gives 1 = —2B. In particular, one has
1/2 1/2

= 1=A(u+1)+ B(u—1).

=u’+ 1+ =u’+1+

2
1 —
ut +u2—1 u—1+u+1 u—1 wu—+1

and each of these terms can be easily integrated. Returning to (6.8), we conclude that

5 1 1 1
/;x_%l :§u3—|—u+§ln|u—1|—§ln|u—|—1|+C

1 1
e3x+em+§ln|e”—1]—§ln(e"’3—|—1)+0. O

W —



Chapter 7

Sequences and series

7.1 Convergence of sequences

( Definition 7.1 — Convergence of sequences

A sequence is a function that is defined on the set N of natural numbers. Its values are
usually denoted by writing a,, for each n € N. We say that the sequence {a,} converges,
if a,, approaches a finite limit as n — oco. Otherwise, we say that {a,} diverges.

( Definition 7.2 — Monotonicity

A sequence {a,} is called monotonic, if it is either increasing, in which case a, < a,1
for each n € N, or else decreasing, in which case a,, > a,1 for each n € N.

( Theorem 7.3 — Monotonic and bounded

NG 7 NS N7 N B

kIf a sequence is monotonic and bounded, then the sequence is also convergent.

e When a precise formula for a, is known, one may use that formula to compute the
limit of a, and prove convergence. However, a precise formula is not always available.

Example 7.4 We show that each of the following sequences converges.

[8n2 + 3 . 34 sinn 1+1 "
an: a9 4 g9 n — T o5 Cn: - .
2n2 +5 n? n

Since the limit of a square root is the square root of the limit, it should be clear that

8n*+3 . 8n? ,
Jan s g =1 = e =vi=2

The limit of the second sequence is zero because 2/n? < b, < 4/n? for each n > 1. This
means that b, is squeezed between two sequences that converge to zero. Finally, one has

cn:<l+l> == lncn:n~1n<1+l>:M.
n n 1/n

74
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This is a limit of the form 0/0, so one may use L’Hopital’s rule to conclude that

1+1/n)~t-(1/n)
lim In¢, = lim (1+1/n) (1/n) =1 = limec¢,=¢' =c. ]

Example 7.5 There are two different ways of checking that a, = n/(n + 1) is increasing.
First of all, one may use derivatives. If we define f(z) = z/(x + 1) for each z > 1, then
(r+1)—=x 1

fl(z) = CESIE = CESNE > 0.

This makes f(x) increasing for all x > 1 and thus a, is increasing for all n > 1. It is also
possible to check this directly. To show that a, is increasing, one needs to show that
n n—+1

ap < Apy1 = < — nP4+om<nP4+2n+1.
n+1 " n+2

Since the rightmost inequality is obviously true, the leftmost inequality holds as well. 0]

Example 7.6 We show that a,, = i—? is decreasing for all n > 1. In this case, we have

on 2n+1
Ap 2 Apy1 = — 2> <~ n+12>2
n! = (n+1)!
Since the rightmost inequality is obviously true, the leftmost inequality holds as well. 0

Example 7.7 We find the limit of the sequence {a,} which is defined by a; = 1 and
Uni1 = V/2a, for each n > 1.
To show that this sequence converges, we shall first show that
1<a, <a,y1 <2 foreachn>1. (7.1)

When n = 1, this statement asserts that 1 < 1 < /2 < 2, so it is certainly true. Suppose
that it is true for some n. Multiplying by 2 and taking square roots, we then find that

2<2a, <2, <4 = V2<12a, <20, <2
- 1< An+1 < Ap42 <2.

In particular, the statement holds for n 4+ 1 as well, so it actually holds for all n € N. This
shows that the given sequence is monotonic and bounded, hence also convergent; denote its
limit by L. Using the definition of the sequence, one may then argue that

py1 = V2a, =— lim a,y; = lim v/2a, =— L =+V2L.
n—oo n—oo

This gives L? = 2L, so either L = 0 or else L = 2. On the other hand, we must also have

1<a,<2 = 1<lma,<2 = 1<L<2

n—oo

because of equation (7.1). We conclude that the limit of the sequence is L = 2. O



