
MAU11201 – Calculus

Tutorial solutions #1

1. Find the domain and the range of the function f which is defined by

f(x) =
4− 3x

6− 5x
.

The domain consists of all points x 6= 6/5. To find the range, we note that

y =
4− 3x

6− 5x
⇐⇒ 6y − 5xy = 4− 3x ⇐⇒ 6y − 4 = 5xy − 3x

⇐⇒ x(5y − 3) = 6y − 4 ⇐⇒ x =
6y − 4

5y − 3
.

The rightmost formula determines the value of x that satisfies y = f(x). Since the formula
makes sense for any number y 6= 3/5, the range consists of all numbers y 6= 3/5.

2. Find the domain and the range of the function f which is defined by

f(x) =
√
x− x2.

When it comes to the domain, one needs x − x2 = x(1 − x) to be non-negative, so the
factors x, 1− x must have the same sign. If x ≥ 0, then 1− x ≥ 0 and this gives 0 ≤ x ≤ 1.
If x ≤ 0, then 1 − x ≤ 0 and this gives 1 ≤ x ≤ 0, which is absurd. Thus, only the former
case may arise and the domain is [0, 1]. To find the range, we note that y = f(x) ≥ 0 and

y2 = x− x2 ⇐⇒ x2 − x+ y2 = 0 ⇐⇒ x =
1±

√

1− 4y2

2
.

Since the rightmost formula is only defined when 4y2 ≤ 1, the range is then [0, 1/2].

3. Show that the function f : (0, 1) → (0,∞) is bijective in the case that

f(x) =
1

x
− 1.

To show that the given function is injective, we note that

f(x1) = f(x2) =⇒ 1

x1

− 1 =
1

x2

− 1 =⇒ 1

x1

=
1

x2

=⇒ x1 = x2.

To show that the given function is surjective, we note that

y = f(x) ⇐⇒ y =
1

x
− 1 ⇐⇒ 1

x
= y + 1 ⇐⇒ x =

1

y + 1
.

The rightmost formula determines the value of x such that y = f(x) and we need to check
that 0 < x < 1 if and only if y > 0. When y > 0, we have y + 1 > 1 > 0, so 0 < x < 1.
When 0 < x < 1, we have 0 < 1 < 1

x
and this gives y > 0, as needed.



4. Express the following polynomials as the product of linear factors.

f(x) = 2x3 − 7x2 + 9, g(x) = x3 − 3x

4
− 1

4
.

The possible rational roots for the first polynomial are ±1,±3,±9,±1/2,±3/2,±9/2.
Checking the first few, one finds that x = −1 and x = 3 are both roots. This implies that
both x+ 1 and x− 3 must be factors, so it easily follows by division that

f(x) = (x+ 1)(2x2 − 9x+ 9) = (x+ 1)(x− 3)(2x− 3).

Let us now turn to the second polynomial and clear denominators to write

4g(x) = 4x3 − 3x− 1.

The possible rational roots are ±1,±1/2,±1/4. Checking these possibilities, one finds that
only x = 1 and x = −1/2 are actually roots. It easily follows by division that

4g(x) = (x− 1)(4x2 + 4x+ 1) = (x− 1)(2x+ 1)2 =⇒ g(x) =
1

4
(x− 1)(2x+ 1)2.

5. Use the addition formulas for sine and cosine to prove the identity

tan(α± β) =
tanα± tan β

1∓ tanα · tan β .

By definition, the tangent of an angle is the quotient of its sine and cosine, so

tan(α± β) =
sin(α± β)

cos(α± β)
=

sinα · cos β ± cosα · sin β
cosα · cos β ∓ sinα · sin β .

Once we now divide both the numerator and the denominator by cosα · cos β, we get

tan(α± β) =
tanα± tan β

1∓ tanα · tan β .

6. Show that the function f : (0,∞) → R is injective in the case that

f(x) =
2x− 1

3x+ 2
.

We assume that f(x1) = f(x2) and we clear denominators to get

2x1 − 1

3x1 + 2
=

2x2 − 1

3x2 + 2
=⇒ (2x1 − 1)(3x2 + 2) = (2x2 − 1)(3x1 + 2)

=⇒ 6x1x2 − 3x2 + 4x1 − 2 = 6x1x2 − 3x1 + 4x2 − 2.

Once we now cancel the common terms, we may easily conclude that

−3x2 + 4x1 = −3x1 + 4x2 =⇒ 7x1 = 7x2 =⇒ x1 = x2.



7. Find the roots of the polynomial f(x) = x3 + x2 − 5x− 2.

The only possible rational roots are ±1,±2 and one may check each of those to see that
only x = 2 is a root. This implies that x− 2 is a factor and division of polynomials gives

f(x) = (x− 2)(x2 + 3x+ 1).

To find the roots of the quadratic factor, one may use the quadratic formula to get

x =
−3±

√
9− 4

2
=

−3±
√
5

2
.

8. Determine the range of the quadratic f(x) = ax2 + bx+ c in the case that a > 0.

We use the standard approach and solve y = f(x) in terms of x. This gives

y = ax2 + bx+ c =⇒ ax2 + bx+ (c− y) = 0 =⇒ x =
−b±

√

b2 − 4a(c− y)

2a

and we need the discriminant to be non-negative, so we need to have

b2 − 4ac+ 4ay ≥ 0 =⇒ 4ay ≥ 4ac− b2 =⇒ y ≥ 4ac− b2

4a
.

In other words, the range of the quadratic has the form [y∗,+∞), where y∗ =
4ac−b

2

4a
.

9. Relate the sines and the cosines of two angles θ1, θ2 whose sum is equal to 2π.

Since θ1 + θ2 = 2π by assumption, the addition formulas for sine and cosine give

sin θ2 = sin(2π − θ1) = sin(2π) · cos θ1 − cos(2π) · sin θ1,
cos θ2 = cos(2π − θ1) = cos(2π) · cos θ1 + sin(2π) · sin θ1.

On the other hand, sin(2π) = 0 and cos(2π) = 1 by definition, so it easily follows that

sin θ2 = − sin θ1, cos θ2 = cos θ1.

10. Determine all angles 0 ≤ θ ≤ 2π such that 2 cos2 θ + 7 cos θ = 4.

Letting x = cos θ for convenience, we get 2x2 + 7x− 4 = 0 and thus

x =
−7±

√
49 + 4 · 8

2 · 2 =
−7±

√
81

4
=

−7± 9

4
=⇒ x =

1

2
,−4.

Since x = cos θ must lie between −1 and 1, the only relevant solution is x = cos θ = 1

2
. In

view of the graph of the cosine function, there should be two angles 0 ≤ θ ≤ 2π that satisfy
this condition. The first one is θ1 =

π

3
and the second one is θ2 = 2π − π

3
= 5π

3
.



MAU11201 – Calculus

Tutorial solutions #2

1. Determine the inverse function f−1 in each of the following cases.

f(x) = log
3
(2x− 5)− 1, f(x) =

2 · 5x + 7

3 · 5x − 4
.

When it comes to the first case, one can easily check that

y + 1 = log
3
(2x− 5) ⇐⇒ 3y+1 = 2x− 5 ⇐⇒ x =

5 + 3y+1

2
,

so the inverse function is defined by f−1(y) = 5+3
y+1

2
. When it comes to the second case,

y =
2 · 5x + 7

3 · 5x − 4
⇐⇒ 3y · 5x − 4y = 2 · 5x + 7 ⇐⇒ 4y + 7 = 5x(3y − 2)

and this gives 5x = 4y+7

3y−2
, so the inverse function is defined by f−1(y) = log

5

4y+7

3y−2
.

2. Simplify each of the following expressions.

sec
(

tan−1 x
)

, cos
(

sin−1 x
)

, log
2
18− 2 log

2
3.

To simplify the first expression, let θ = tan−1 x and note that tan θ = x. When x ≥ 0,
the angle θ arises in a right triangle with an opposite side of length x and an adjacent side
of length 1. It follows by Pythagoras’ theorem that the hypotenuse has length

√
1 + x2, so

the definition of secant gives

sec(tan−1 x) = sec θ =
hypotenuse

adjacent side
=

√
1 + x2.

When x ≤ 0, the last equation holds with −x instead of x. This changes the term tan−1 x
by a minus sign, but the secant remains unchanged, so the equation is still valid.

To simplify the second expression, one may use a similar approach or simply note that

θ = sin−1 x =⇒ sin θ = x =⇒ cos2 θ = 1− sin2 θ = 1− x2.

Since θ = sin−1 x lies between −π/2 and π/2 by definition, cos θ is non-negative and

cos2 θ = 1− x2 =⇒ cos θ =
√
1− x2.

As for the third expression, the standard properties of the logarithmic function give

log
2
18− 2 log

2
3 = log

2
18− log

2
32 = log

2

18

32
= log

2
21 = 1.



3. Use the ε-δ definition of limits to compute limx→3 f(x) in the case that

f(x) =

{

3x− 7 if x ≤ 3
8− 2x if x > 3

}

.

Note that x is approaching 3 and that f(x) is either 3x − 7 or 8 − 2x. We thus expect
the limit to be L = 2. To prove this formally, we let ε > 0 and estimate the expression

|f(x)− 2| =
{

|3x− 9| if x ≤ 3
|6− 2x| if x > 3

}

=

{

3|x− 3| if x ≤ 3
2|x− 3| if x > 3

}

.

If we assume that 0 6= |x− 3| < δ, then we may use the last equation to get

|f(x)− 2| ≤ 3|x− 3| < 3δ.

Since our goal is to show that |f(x)− 2| < ε, an appropriate choice of δ is thus δ = ε/3.

4. Compute each of the following limits.

L = lim
x→2

x3 − 2x2 + 5x− 1

x− 3
, M = lim

x→2

x3 − 3x2 + 4x− 4

x− 2
.

The first limit is the limit of a rational function which is defined at x = 2, so

L =
23 − 2 · 22 + 5 · 2− 1

2− 3
= −9.

The second limit involves a rational function which can be simplified. In fact, one has

M = lim
x→2

(x− 2)(x2 − x+ 2)

x− 2
= lim

x→2

(x2 − x+ 2) = 22 − 2 + 2 = 4.

5. Use the ε-δ definition of limits to compute limx→3 (3x
2 − 7x+ 2).

Let f(x) = 3x2 − 7x+ 2 for convenience. Then f(3) = 8 and one has

|f(x)− f(3)| = |3x2 − 7x− 6| = |x− 3| · |3x+ 2|.

The factor |x− 3| is related to our usual assumption that 0 6= |x− 3| < δ. To estimate the
remaining factor |3x+ 2|, we assume that δ ≤ 1 for simplicity and note that

|x− 3| < δ ≤ 1 =⇒ −1 < x− 3 < 1

=⇒ 2 < x < 4 =⇒ 8 < 3x+ 2 < 14.

Combining the estimates |x− 3| < δ and |3x+ 2| < 14, one may then conclude that

|f(x)− f(3)| = |x− 3| · |3x+ 2| < 14δ ≤ ε,

as long as δ ≤ ε/14 and δ ≤ 1. An appropriate choice of δ is thus δ = min(ε/14, 1).



6. For which value of a does the limit limx→2 f(x) exist? Explain.

f(x) =

{

2x2 − ax+ 3 if x ≤ 2
4x3 + 3x− a if x > 2

}

.

Since the given function is a polynomial on the interval (−∞, 2), its limit from the left is

lim
x→2−

f(x) = lim
x→2−

(2x2 − ax+ 3) = 8− 2a+ 3 = 11− 2a.

The same argument applies for the interval (2,+∞), so the limit from the right is

lim
x→2+

f(x) = lim
x→2+

(4x3 + 3x− a) = 32 + 6− a = 38− a.

To ensure that the given function has a limit as x approaches 2, one must then have

11− 2a = 38− a ⇐⇒ a = −27.

7. Determine the inverse function f−1 in the case that f : [2,∞) → [1,∞) is defined by

f(x) = 2x2 − 8x+ 9.

Using the quadratic formula to solve the equation y = f(x) for x, one finds that

2x2 − 8x+ (9− y) = 0 =⇒ x =
8±

√

64− 8(9− y)

4
=

8±
√
8y − 8

4
.

Since y ≥ 1, the square root is obviously defined. Since x ≥ 2, however, one needs to have

x =
8 +

√
8y − 8

4
= 2 +

√
2y − 2

2
=⇒ f−1(y) = 2 +

√
2y − 2

2
.

8. Compute each of the following limits.

L = lim
x→3

x3 − 5x2 + 7x− 3

x− 3
, M = lim

x→3

2x3 − 9x2 + 27

(x− 3)2
.

When it comes to the first limit, division of polynomials gives

L = lim
x→3

(x− 3)(x2 − 2x+ 1)

x− 3
= lim

x→3

(x2 − 2x+ 1) = 9− 6 + 1 = 4.

When it comes to the second limit, division of polynomials gives

M = lim
x→3

(x2 − 6x+ 9)(2x+ 3)

x2 − 6x+ 9
= lim

x→3

(2x+ 3) = 6 + 3 = 9.



9. Use the ε-δ definition of limits to compute limx→2
1

x
.

To show that the limit is L = 1

2
, we let ε > 0 be given and we estimate the expression

|f(x)− L| =
∣

∣

∣

∣

1

x
− 1

2

∣

∣

∣

∣

=
|x− 2|
2|x| .

Assume that 0 6= |x− 2| < δ and that δ ≤ 1 for simplicity. We must then have

|x− 2| < δ ≤ 1 =⇒ −1 < x− 2 < 1

=⇒ 1 < x < 3 =⇒ 1

2|x| =
1

2x
<

1

2
.

Once we now combine these estimates, we may actually conclude that

|f(x)− L| = |x− 2|
2|x| <

δ

2|x| <
δ

2
≤ ε,

as long as δ ≤ 2ε and δ ≤ 1. An appropriate choice of δ is thus δ = min(2ε, 1).

10. Use the ε-δ definition of limits to compute limx→2 (4x
2 − 5x+ 1).

Let f(x) = 4x2 − 5x+ 1 for convenience. Then f(2) = 7 and one has

|f(x)− f(2)| = |4x2 − 5x− 6| = |x− 2| · |4x+ 3|.

The factor |x− 2| is related to our usual assumption that 0 6= |x− 2| < δ. To estimate the
remaining factor |4x+ 3|, we assume that δ ≤ 1 for simplicity and we find that

|x− 2| < δ ≤ 1 =⇒ −1 < x− 2 < 1

=⇒ 1 < x < 3 =⇒ 7 < 4x+ 3 < 15.

Combining the estimates |x− 2| < δ and |4x+ 3| < 15, one may now conclude that

|f(x)− f(2)| = |x− 2| · |4x+ 3| < 15δ ≤ ε,

as long as δ ≤ ε/15 and δ ≤ 1. An appropriate choice of δ is thus δ = min(ε/15, 1).



MAU11201 – Calculus

Tutorial solutions #3

1. Show that there exists a real number 0 < x < π/2 that satisfies the equation

x3 cos x+ x2 sin x = 2.

Consider the function f which is defined by f(x) = x3 cos x+x2 sin x− 2. Being the sum
of continuous functions, f is then continuous and one can easily check that

f(0) = −2 < 0, f(π/2) =
π2

4
− 2 =

π2 − 8

4
> 0.

In view of Bolzano’s theorem, this already implies that f has a root 0 < x < π/2.

2. For which values of a, b is the function f continuous at the point x = 3? Explain.

f(x) =







2x2 + ax+ b if x < 3
2a+ b+ 1 if x = 3

5x2 − bx+ 2a if x > 3







.

Since f is a polynomial on the intervals (−∞, 3) and (3,+∞), it should be clear that

lim
x→3−

f(x) = lim
x→3−

(2x2 + ax+ b) = 3a+ b+ 18,

lim
x→3+

f(x) = lim
x→3+

(5x2 − bx+ 2a) = 2a− 3b+ 45.

In particular, the function f is continuous at the given point if and only if

3a+ b+ 18 = 2a− 3b+ 45 = 2a+ b+ 1.

Solving this system of equations, one obtains a unique solution which is given by

45− 3b = b+ 1 =⇒ 4b = 44 =⇒ b = 11 =⇒ a = 27− 4b = −17.

In other words, f is continuous at the given point if and only if a = −17 and b = 11.

3. Show that f(x) = x3− 3x2+1 has three roots in the interval (−1, 3). Hint: you need
only consider the values that are attained by f at the integers −1 ≤ x ≤ 3.

Being a polynomial, the given function is continuous and one can easily check that

f(−1) = −3, f(0) = 1, f(1) = −1, f(2) = −3, f(3) = 1.

Since the values f(−1) and f(0) have opposite signs, f has a root that lies in (−1, 0). The
same argument yields a second root in (0, 1) and also a third root in (2, 3).



4. Compute each of the following limits.

L = lim
x→+∞

2x4 − 7x+ 3

3x4 − 5x2 + 1
, M = lim

x→2−

2x2 + 3x− 4

3x3 − 7x2 + 4x− 4
.

Since the first limit involves infinite values of x, it should be clear that

L = lim
x→+∞

2x4 − 7x+ 3

3x4 − 5x2 + 1
= lim

x→+∞

2x4

3x4
=

2

3
.

For the second limit, the denominator becomes zero when x = 2, while the numerator is
nonzero at that point. Thus, one needs to factor the denominator and this gives

M = lim
x→2−

2x2 + 3x− 4

(x− 2)(3x2 − x+ 2)
= lim

x→2−

10

12(x− 2)
= −∞.

5. Use the definition of the derivative to compute f ′(x0) in each of the following cases.

f(x) = 3x2, f(x) = 2/x, f(x) = (2x+ 3)2.

The derivative of the first function is given by the limit

f ′(x0) = lim
x→x0

3x2 − 3x2

0

x− x0

= lim
x→x0

3(x− x0)(x+ x0)

x− x0

= lim
x→x0

3(x+ x0) = 6x0.

To compute the derivative of the second function, we begin by writing

f(x)− f(x0) =
2

x
− 2

x0

=
2(x0 − x)

xx0

.

Once we now divide this expression by x− x0, we may also conclude that

f ′(x0) = lim
x→x0

2(x0 − x)

(x− x0)xx0

= lim
x→x0

−2

xx0

= − 2

x2

0

.

Finally, the derivative of the third function is given by the limit

f ′(x0) = lim
x→x0

(2x+ 3)2 − (2x0 + 3)2

x− x0

= lim
x→x0

(2x+ 2x0 + 6)(2x− 2x0)

x− x0

= 4(2x0 + 3).

6. Show that there exists a real number 0 < x < π/2 that satisfies the equation

x2 + x− 1 = sin x.

Consider the function f which is defined by f(x) = x2 + x− 1− sin x. Being the sum of
continuous functions, f is then continuous and one can easily check that

f(0) = −1 < 0, f(π/2) =
π2

4
+

π

2
− 2 >

π2 − 8

4
> 0.

In view of Bolzano’s theorem, this already implies that f has a root 0 < x < π/2.



7. Show that f(x) = 3x3−5x+1 has three roots in the interval (−2, 2). Hint: you need
only consider the values that are attained by f at the integers −2 ≤ x ≤ 2.

Being a polynomial, the given function is continuous and one can easily check that

f(−2) = −13, f(−1) = 3, f(0) = 1, f(1) = −1, f(2) = 15.

Since the values f(−2) and f(−1) have opposite signs, f has a root that lies in (−2,−1).
The same argument yields a second root in (0, 1) and also a third root in (1, 2).

8. Compute each of the following limits.

L = lim
x→−∞

6x3 − 5x2 + 7

5x4 − 3x+ 1
, M = lim

x→2+

x3 + x2 − 5x− 2

x3 − 5x2 + 8x− 4
.

Since the first limit involves infinite values of x, it should be clear that

L = lim
x→−∞

6x3 − 5x2 + 7

5x4 − 3x+ 1
= lim

x→−∞

6x3

5x4
= lim

x→−∞

6

5x
= 0.

For the second limit, both the numerator and the denominator become zero when x = 2, so
one needs to factor each of these expressions. Using division of polynomials, we get

M = lim
x→2+

(x− 2)(x2 + 3x+ 1)

(x− 2)2(x− 1)
= lim

x→2+

11

x− 2
= +∞.

9. Use the Squeeze Theorem to show that limx→0 x
2 sin(1/x) = 0.

Since −1 ≤ sin x ≤ 1 for all x, one has −1 ≤ sin(1/x) ≤ 1 for all x 6= 0 and

−x2 ≤ x2 sin
1

x
≤ x2.

On the other hand, both −x2 and x2 approach zero as x → 0, so this also implies

lim
x→0

x2 sin
1

x
= 0.

10. Suppose that f is continuous with f(0) < 1. Show that there exists some δ > 0
such that f(x) < 1 for all −δ < x < δ. Hint: use the ε-δ definition for some suitable ε.

Since ε = 1− f(0) is positive by assumption, there exists some δ > 0 such that

|x− 0| < δ =⇒ |f(x)− f(0)| < ε =⇒ |f(x)− f(0)| < 1− f(0).

Rearranging terms to simplify this equation, one may thus conclude that

−δ < x < δ =⇒ f(0)− 1 < f(x)− f(0) < 1− f(0) =⇒ f(x) < 1.



MAU11201 – Calculus

Tutorial solutions #4

1. Compute the derivative y′ = dy

dx
in each of the following cases.

y = ln(sec x) + etanx, y = sin(sec2(4x)).

When it comes to the first function, one may use the chain rule to get

y′ =
1

secx
· sec x tan x+ etanx sec2 x = tan x+ etanx sec2 x.

When it comes to the second function, one similarly finds that

y′ = cos(sec2(4x)) · [sec2(4x)]′

= cos(sec2(4x)) · 2 sec(4x) · [sec(4x)]′

= cos(sec2(4x)) · 2 sec(4x) · 4 sec(4x) tan(4x)
= 8 cos(sec2(4x)) · sec2(4x) · tan(4x).

2. Compute the derivative y′ = dy

dx
in the case that x2 sin y = y2ex.

We differentiate both sides of the equation and then rearrange terms. This gives

2x sin y + x2y′ cos y = 2yy′ex + y2ex =⇒ (x2 cos y − 2yex)y′ = y2ex − 2x sin y

=⇒ y′ =
y2ex − 2x sin y

x2 cos y − 2yex
.

3. Compute the derivative y′ = dy

dx
in each of the following cases.

y = x2 · tan−1(2x), y = (x · sin x)x.

When it comes to the first function, we use the product rule and the chain rule to get

y′ = 2x · tan−1(2x) + x2 · 2

(2x)2 + 1
= 2x · tan−1(2x) +

2x2

4x2 + 1
.

When it comes to the second function, logarithmic differentiation gives

ln y = x ln(x · sin x) =⇒ y′

y
= ln(x sin x) + x · 1

x sin x
· (sin x+ x cos x)

=⇒ y′ = y · (ln(x sin x) + 1 + x cot x)

=⇒ y′ = (x · sin x)x · (ln(x sin x) + 1 + x cot x).



4. Compute the derivative f ′(x0) in the case that

f(x) =
(x3 + 5x2 + 2)3 · esinx

√
x2 + 4x+ 1

, x0 = 0.

First, we use logarithmic differentiation to determine f ′(x). In this case, we have

ln |f(x)| = ln |x3 + 5x2 + 2|3 + ln esinx − ln |x2 + 4x+ 1|1/2

= 3 ln |x3 + 5x2 + 2|+ sin x− 1

2
ln |x2 + 4x+ 1|.

Differentiating both sides of this equation, one easily finds that

f ′(x)

f(x)
=

3(3x2 + 10x)

x3 + 5x2 + 2
+ cosx− 2x+ 4

2(x2 + 4x+ 1)
.

To compute the derivative f ′(0), one may then substitute x = 0 to conclude that

f ′(0)

f(0)
= 0 + cos 0− 4

2
= −1 =⇒ f ′(0) = −f(0) = −8.

5. Compute the derivative y′ = dy

dx
in the case that

y = sin−1 u, u = ln(2z2 + 3z + 1), z =
3x− 1

2x+ 5
.

Differentiating the given equations, one easily finds that

dy

du
=

1√
1− u2

,
du

dz
=

4z + 3

2z2 + 3z + 1
,

dz

dx
=

3(2x+ 5)− 2(3x− 1)

(2x+ 5)2
=

17

(2x+ 5)2
.

According to the chain rule, the derivative dy

dx
is the product of these factors, namely

dy

dx
=

dy

du

du

dz

dz

dx
=

1√
1− u2

· 4z + 3

2z2 + 3z + 1
· 17

(2x+ 5)2
.

6. Compute the derivative y′ = dy

dx
in each of the following cases.

y = (e2x + x3)4, y = tan(x sin x).

When it comes to the first function, one may use the chain rule to get

y′ = 4(e2x + x3)3 · (e2x + x3)′ = 4(e2x + x3)3 · (2e2x + 3x2).

When it comes to the second function, one similarly finds that

y′ = sec2(x sin x) · (x sin x)′ = sec2(x sin x) · (sin x+ x cos x).



7. Compute the derivative y′ = dy

dx
in the case that x2 + y2 = sin(xy).

Differentiating both sides of the given equation, one finds that

2x+ 2yy′ = cos(xy) · (y + xy′) = y cos(xy) + xy′ cos(xy).

Once we now rearrange terms and solve for y′, we may conclude that

(2y − x cos(xy)) · y′ = y cos(xy)− 2x =⇒ y′ =
y cos(xy)− 2x

2y − x cos(xy)
.

8. Compute the derivative f ′(x0) in the case that

f(x) =
(x2 + 3x+ 1)4 ·

√
2x+ cos x

(ex + x)3
, x0 = 0.

First, we use logarithmic differentiation to determine f ′(x). In this case, we have

ln |f(x)| = ln |x2 + 3x+ 1|4 + ln |2x+ cosx|1/2 − ln |ex + x|3

= 4 ln |x2 + 3x+ 1|+ 1

2
ln |2x+ cos x| − 3 ln |ex + x|.

Differentiating both sides of this equation, one may use the chain rule to get

f ′(x)

f(x)
=

4(2x+ 3)

x2 + 3x+ 1
+

2− sin x

2(2x+ cosx)
− 3(ex + 1)

ex + x
.

To compute the derivative f ′(0), one may then substitute x = 0 to conclude that

f ′(0)

f(0)
= 4 · 3 + 2

2
− 3 · 2 = 7 =⇒ f ′(0) = 7f(0) = 7.

9. Compute the derivative y′ = dy

dx
in the case that

y =
2u− 1

3u+ 1
, u = sin(ez), z = tan−1(x2).

Differentiating the given equations, one easily finds that

dy

du
=

2(3u+ 1)− 3(2u− 1)

(3u+ 1)2
=

5

(3u+ 1)2
,

du

dz
= ez cos(ez),

dz

dx
=

2x

x4 + 1
.

According to the chain rule, the derivative dy

dx
is the product of these factors, namely

dy

dx
=

dy

du

du

dz

dz

dx
=

5

(3u+ 1)2
· ez cos(ez) · 2x

x4 + 1
.



10. Compute the derivative f ′(1) in the case that x2f(x) + xf(x)3 = 2 for all x.

Letting y = f(x) for convenience, we get x2y + xy3 = 2 and this implies that

2xy + x2y′ + y3 + 3xy2y′ = 0 =⇒ (x2 + 3xy2)y′ = −2xy − y3

=⇒ y′ = −y(2x+ y2)

x(x+ 3y2)
.

We need to evaluate this expression at the point x = 1. At that point, one has

x2y + xy3 = 2 =⇒ y + y3 = 2 =⇒ y3 + y − 2 = 0.

It is easy to see that y = 1 is a solution. In fact, it is the only real solution because

y3 + y − 2 = (y − 1)(y2 + y + 2)

and the quadratic factor has no real roots. This gives y = 1 at the point x = 1, so

f ′(x) = −y(2x+ y2)

x(x+ 3y2)
=⇒ f ′(1) = −3

4
.



MAU11201 – Calculus

Tutorial solutions #5

1. Show that the polynomial f(x) = x3 − 5x2 − 8x+ 1 has exactly one root in (0, 1).

Being a polynomial, f is continuous on the interval [0, 1] and we also have

f(0) = 1, f(1) = 1− 5− 8 + 1 = −11.

Since f(0) and f(1) have opposite signs, f must have a root that lies in (0, 1). To show it is
unique, suppose that f has two roots in (0, 1). Then f ′ must have a root in this interval by
Rolle’s theorem. On the other hand, it is easy to check that

f ′(x) = 3x2 − 10x− 8 = (3x+ 2)(x− 4).

Since f ′ has no roots in (0, 1), we conclude that f has exactly one root in (0, 1).

2. Let b > 1 be a given constant. Use the mean value theorem to show that

1− 1

b
< ln b < b− 1.

Since f(x) = ln x is differentiable with f ′(x) = 1/x, the mean value theorem gives

f(b)− f(1)

b− 1
= f ′(c) =

1

c

for some point 1 < c < b. Using the fact that 1

b
< 1

c
< 1, one may thus conclude that

1

b
<

ln b− ln 1

b− 1
< 1 =⇒ 1− 1

b
< ln b < b− 1.

3. Compute each of the following limits.

L1 = lim
x→2

2x3 − 5x2 + 5x− 6

3x3 − 5x2 − 4
, L2 = lim

x→∞

ln x

x2
, L3 = lim

x→0

(x+ cosx)1/x.

The first limit has the form 0/0, so one may use L’Hôpital’s rule to get

L1 = lim
x→2

6x2 − 10x+ 5

9x2 − 10x
=

24− 20 + 5

36− 20
=

9

16
.

The second limit has the form ∞/∞, so L’Hôpital’s rule is still applicable and

L2 = lim
x→∞

1/x

2x
= lim

x→∞

1

2x2
= 0.



The third limit involves a non-constant exponent which can be eliminated by writing

lnL3 = ln lim
x→0

(x+ cos x)1/x = lim
x→0

ln(x+ cos x)1/x = lim
x→0

ln(x+ cos x)

x
.

This gives a limit of the form 0/0, so one may use L’Hôpital’s rule to find that

lnL3 = lim
x→0

1− sin x

x+ cos x
=

1− 0

0 + 1
= 1.

Since lnL3 = 1, the original limit L3 is then equal to L3 = elnL3 = e.

4. For which values of x is f(x) = (ln x)2 increasing? For which values is it concave up?

To say that f(x) is increasing is to say that f ′(x) > 0. Let us then compute

f ′(x) = 2 ln x · (ln x)′ = 2 ln x

x
.

Since the given function is only defined at points x > 0, it is increasing if and only if

ln x > 0 ⇐⇒ x > e0 ⇐⇒ x > 1.

To say that f(x) is concave up is to say that f ′′(x) > 0. According to the quotient rule,

f ′′(x) =
(2/x) · x− 2 ln x

x2
=

2(1− ln x)

x2
.

Since the denominator is always positive, f(x) is then concave up if and only if

1− ln x > 0 ⇐⇒ ln x < 1 ⇐⇒ 0 < x < e.

5. Find the intervals on which f is increasing/decreasing and the intervals on which f
is concave up/down. Use this information to sketch the graph of f .

f(x) =
x2

x2 + 3
.

To say that f(x) is increasing is to say that f ′(x) > 0. In this case, we have

f ′(x) =
2x · (x2 + 3)− 2x · x2

(x2 + 3)2
=

6x

(x2 + 3)2
,

so it is clear that f(x) is increasing if and only if x > 0. To say that f(x) is concave up is
to say that f ′′(x) > 0. Using both the quotient rule and the chain rule, we get

f ′′(x) =
6(x2 + 3)2 − 2(x2 + 3) · 2x · 6x

(x2 + 3)4
=

6(x2 + 3)− 24x2

(x2 + 3)3
=

18(1− x2)

(x2 + 3)3
.

Since the denominator is always positive, f(x) is then concave up if and only if

1− x2 > 0 ⇐⇒ x2 < 1 ⇐⇒ −1 < x < 1.
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Figure 1: The graph of f(x) =
x2

x2 + 3
.

6. Show that the polynomial f(x) = x3 + x2 − 5x+ 1 has exactly two roots in (0, 2).

To prove existence using Bolzano’s theorem, we note that f is continuous with

f(0) = 1, f(1) = 1 + 1− 5 + 1 = −2, f(2) = 8 + 4− 10 + 1 = 3.

In view of Bolzano’s theorem, f must then have a root in (0, 1) and another root in (1, 2),
so it has two roots in (0, 2). Suppose that it has three roots in (0, 2). Then f ′ must have
two roots in this interval by Rolle’s theorem. On the other hand, it is easy to check that

f ′(x) = 3x2 + 2x− 5 = (3x+ 5)(x− 1).

Since f ′ has only one root in (0, 2), we conclude that f has only two roots in (0, 2).

7. Use the mean value theorem for the case f(x) =
√
x+ 4 to show that

2 +
1

2
<

√
7 < 2 +

3

4
.

According to the mean value theorem, there exists a point 0 < c < 3 such that

f(3)− f(0)

3− 0
= f ′(c) =⇒

√
7−

√
4

3
=

1

2
√
c+ 4

.

To estimate the square root on the right hand side, we note that

0 < c < 3 =⇒ 4 < c+ 4 < 7 < 9 =⇒ 2 <
√
c+ 4 < 3.

Once we now combine the last two equations, we may easily conclude that

1

3
<

1√
c+ 4

<
1

2
=⇒ 1

2
<

√
7− 2 <

3

4
.



8. Compute each of the following limits.

L1 = lim
x→2

x3 − 5x2 + 8x− 4

x3 − 3x2 + 4
, L2 = lim

x→1

ln x

x4 − 1
, L3 = lim

x→0+

ln(sin x)

ln(tan x)
.

The first limit has the form 0/0, so one may use L’Hôpital’s rule to find that

L1 = lim
x→2

3x2 − 10x+ 8

3x2 − 6x
.

Since the limit on the right hand side is still a limit of the form 0/0, one has

L1 = lim
x→2

6x− 10

6x− 6
=

12− 10

12− 6
=

1

3
.

The second limit is also of the form 0/0 and an application of L’Hôpital’s rule gives

L2 = lim
x→1

1/x

4x3
=

1

4
.

The third limit has the form ∞/∞, so it follows by L’Hôpital’s rule that

L3 = lim
x→0+

(sin x)−1 · cos x
(tan x)−1 · sec2 x.

Since both cos x and secx are approaching 1 as x approaches zero, we conclude that

L3 = lim
x→0+

tan x

sin x
= lim

x→0+

1

cos x
= 1.

9. For which values of x is f(x) = e−2x2

increasing? For which values is it concave up?

To say that f(x) is increasing is to say that f ′(x) > 0. Let us then compute

f ′(x) = e−2x2 · (−2x2)′ = −4xe−2x2

.

Since the exponential factor is always positive, f(x) is increasing if and only if x < 0. To
say that f(x) is concave up is to say that f ′′(x) > 0. In this case, we have

f ′′(x) = −4e−2x2 − 4x · (−4x)e−2x2

= (16x2 − 4)e−2x2

= 4(2x− 1)(2x+ 1)e−2x2

.

It easily follows that f(x) is concave up if and only if x ∈ (−∞,−1/2) ∪ (1/2,+∞).



10. Show that there exists a unique number 1 < x < π such that x3 = 3 sin x+ 1.

It is clear that f(x) = x3 − 3 sin x− 1 is continuous on [1, π] and we also have

f(1) = −3 sin 1 < 0, f(π) = π3 − 1 > 0.

Since f(1) and f(π) have opposite signs, f must have a root that lies in (1, π). To show it
is unique, suppose f has two roots in (1, π). Then f ′ must have a root in this interval by
Rolle’s theorem. On the other hand, it is easy to check that

f ′(x) = 3x2 − 3 cos x > 3− 3 cos x = 3(1− cos x) ≥ 0

for all x > 1. In particular, f ′ has no roots in (1, π) and f has exactly one root in (1, π).



MAU11201 – Calculus

Tutorial solutions #6

1. Let a1, a2, . . . , an be some given constants and let f be the function defined by

f(x) = (x− a1)
2 + (x− a2)

2 + . . .+ (x− an)
2.

Show that f(x) becomes minimum when x is equal to x = (a1 + a2 + . . .+ an)/n.

The derivative of the given function can be expressed in the form

f ′(x) = 2(x− a1) + 2(x− a2) + . . .+ 2(x− an) = 2(nx− nx) = 2n(x− x).

This means that f ′(x) is negative when x < x and positive when x > x. In particular, f(x)
is decreasing when x < x and increasing when x > x, so it becomes minimum when x = x.

2. Find the global minimum and the global maximum values that are attained by

f(x) = 3x4 − 16x3 + 18x2 − 1, 0 ≤ x ≤ 2.

The derivative of the given function can be expressed in the form

f ′(x) = 12x3 − 48x2 + 36x = 12x(x2 − 4x+ 3) = 12x(x− 1)(x− 3).

Thus, the only points at which the minimum/maximum value may occur are the points

x = 0, x = 2, x = 1, x = 3.

We exclude the rightmost point, as it does not lie in the given interval, and we compute

f(0) = −1, f(2) = 48− 128 + 72− 1 = −9, f(1) = 3− 16 + 18− 1 = 4.

This means that the minimum value is f(2) = −9 and the maximum value is f(1) = 4.

3. Find the linear approximation to the function f at the point x0 in the case that

f(x) =
(x2 + 1)4 · ex2

−1

√
3x+ 1

, x0 = 1.

First, we use logarithmic differentiation to compute the derivative f ′(x). Let us write

ln f(x) = ln(x2 + 1)4 + ln ex
2
−1 − ln(3x+ 1)1/2

= 4 ln(x2 + 1) + x2 − 1− 1

2
ln(3x+ 1).



Differentiating both sides of this equation, one may use the chain rule to find that

f ′(x)

f(x)
=

4 · 2x
x2 + 1

+ 2x− 3

2(3x+ 1)
.

In our case, we have f(1) = 2
4e0
√

4
= 8, so one may substitute x = 1 to conclude that

f ′(1)

f(1)
=

4 · 2
1 + 1

+ 2− 3

2 · 4 =⇒ f ′(1) = 8

(

6− 3

8

)

= 48− 3 = 45.

Since f(1) = 8 and f ′(1) = 45, the linear approximation at the given point is thus

L(x) = f ′(1) · (x− 1) + f(1) = 45(x− 1) + 8 = 45x− 37.

4. The top of a 5m ladder is sliding down a wall at the rate of 0.25 m/sec. How fast is
the base sliding away from the wall when the top lies 3 metres above the ground?

Let x be the horizontal distance between the base of the ladder and the wall, and let y
be the vertical distance between the top of the ladder and the floor. We must then have

x(t)2 + y(t)2 = 52 =⇒ 2x(t)x′(t) + 2y(t)y′(t) = 0.

At the given moment, y′(t) = −1/4 and y(t) = 3, so it easily follows that

x′(t) = −y(t)y′(t)

x(t)
= − y(t)y′(t)

√

52 − y(t)2
=

3/4√
52 − 32

=
3

16
.

5. Let n > 0 be a given constant. Show that xn ln x ≥ − 1

ne
for all x > 0.

Setting f(x) = xn ln x for convenience, one may use the product rule to find that

f ′(x) = nxn−1 · ln x+ xn · x−1 = xn−1 (n ln x+ 1).

Since x > 0 by assumption, the derivative f ′(x) is negative if and only if

n ln x+ 1 < 0 ⇐⇒ ln x < −1/n ⇐⇒ 0 < x < e−1/n.

It easily follows that f(x) is decreasing when 0 < x < e−1/n and increasing when x > e−1/n.
In particular, the minimum value of f(x) is attained at the point x = e−1/n and

f(x) ≥ f(e−1/n) =
(

e−1/n
)n · ln e−1/n =⇒ f(x) ≥ −e−1

n
= − 1

ne
.



6. Find the global minimum and the global maximum values that are attained by

f(x) = x2 · e4−2x, −1 ≤ x ≤ 2.

Using both the product rule and the chain rule, one may differentiate f(x) to get

f ′(x) = 2x · e4−2x + x2 · e4−2x · (−2) = 2xe4−2x · (1− x).

Thus, the only points at which the minimum/maximum value may occur are the points

x = −1, x = 2, x = 0, x = 1.

The corresponding values that are attained by f(x) are easily found to be

f(−1) = e6, f(2) = 4e0 = 4, f(0) = 0, f(1) = e2.

In particular, the minimum value is f(0) = 0 and the maximum value is f(−1) = e6.

7. Find the point on the graph of y = 2
√
x which lies closest to the point (2, 1).

The distance between the point (x, y) and the point (2, 1) is given by the formula

d(x) =
√

(x− 2)2 + (y − 1)2 =

√

(x− 2)2 + (2
√
x− 1)2.

The value of x that minimises this expression is the value of x that minimises its square

f(x) = d(x)2 = (x− 2)2 + (2
√
x− 1)2.

Let us then worry about f(x), instead. Using the chain rule, one finds that

f ′(x) = 2(x− 2) + 2(2
√
x− 1) · 2

2
√
x
= 2

(

x− 2 + 2− 1√
x

)

=
2(x3/2 − 1)√

x
.

This means that f ′(x) is negative when 0 < x < 1 and positive when x > 1, so f(x) attains
its minimum value when x = 1. Thus, the closest point is the point (x, y) = (1, 2).

8. If a right triangle has a hypotenuse of length a > 0, how large can its perimeter be?

Let x, y be the other two sides of the triangle. Then x2 + y2 = a2 and the perimeter is

f(x) = a+ x+ y = a+ x+
√
a2 − x2, 0 ≤ x ≤ a.

We need to determine the maximum value that is attained by this function. Since

f ′(x) = 1 +
1

2
√
a2 − x2

· (a2 − x2)′ = 1− x√
a2 − x2

,



it is easy to check that

f ′(x) = 0 ⇐⇒ x =
√
a2 − x2 ⇐⇒ x2 = a2 − x2 ⇐⇒ 2x2 = a2.

In particular, the only points at which the maximum value may occur are the points

x = a/
√
2, x = 0, x = a.

The corresponding values are f(0) = a+
√
a2 = 2a, f(a) = a+ a = 2a and

f(a/
√
2) = a+

a√
2
+

√

a2 − a2

2
= a+

2a√
2
= (1 +

√
2)a.

Noting that 1 +
√
2 > 2, we conclude that the largest possible perimeter is (1 +

√
2)a.

9. Two cars are driving in opposite directions along two parallel roads which are 300m
apart. If one is driving at 50 m/sec and the other is driving at 30 m/sec, how fast is the
distance between them changing 5 seconds after they pass one another?

Let us denote by x and y the displacements of the two cars after they pass one another.
Then x + y and 300 are the sides of a right triangle whose hypotenuse is the distance z
between the two cars. In view of Pythagoras’ theorem, we must then have

z(t)2 = (x(t) + y(t))2 + 3002 =⇒ 2z(t)z′(t) = 2(x(t) + y(t)) · (x′(t) + y′(t)).

At the given moment, x′(t) = 50, y′(t) = 30 and x(t) + y(t) = 5 · 50 + 5 · 30 = 400, so

z′(t) =
400 · 80√
4002 + 3002

=
400 · 80
500

=
320

5
= 64.

10. Show that f(x) = x4 + 5x− 1 has a unique root in (0, 1) and use Newton’s method
with initial guess x1 = 0 to approximate this root within two decimal places.

The existence of a root in (0, 1) follows by Bolzano’s theorem, as f is continuous with

f(0) = −1, f(1) = 1 + 5− 1 = 5.

Moreover, the root is unique because f ′(x) = 4x3 + 5 is positive on (0, 1), so f is increasing
on this interval. To use Newton’s method, we repeatedly apply the formula

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x4

n + 5xn − 1

4x3
n + 5

.

Starting with the initial guess x1 = 0, one obtains the approximations

x1 = 0, x2 = 0.2, x3 = 0.1996820350, x4 = 0.1996820302.

This suggests that the unique root in (0, 1) is roughly 0.1996820 to seven decimal places.



MAU11201 – Calculus

Tutorial solutions #7

1. Find the area of the region enclosed by the graphs of f(x) = 3x2 and g(x) = x+ 4.

The graph of the parabola f(x) = 3x2 meets the graph of the line g(x) = x+ 4 when

3x2 = x+ 4 ⇐⇒ 3x2 − x− 4 = 0 ⇐⇒ (3x− 4)(x+ 1) = 0.

Since the line lies above the parabola at the points −1 ≤ x ≤ 4/3, the area is then

∫

4/3

−1

[g(x)− f(x)] dx =

∫

4/3

−1

[x+ 4− 3x2] dx =

[

x2

2
+ 4x− x3

]4/3

−1

=
343

54
.

2. Compute the volume of the solid that is obtained when the graph of f(x) = x2 + 3
is rotated around the x-axis over the interval [0, 2].

The volume of the resulting solid is the integral of πf(x)2 and this is equal to

π

∫

2

0

(x2 + 3)2 dx = π

∫

2

0

(x4 + 6x2 + 9) dx = π

[

x5

5
+ 2x3 + 9x

]2

0

=
202π

5
.

3. Compute the length of the graph of f(x) = 1

3
(x2 + 2)3/2 over the interval [1, 3].

The length of the graph is given by the integral of
√

1 + f ′(x)2. In this case,

f ′(x) =
1

3
· 3
2
· (x2 + 2)1/2 · 2x = x(x2 + 2)1/2,

so the expression 1 + f ′(x)2 can be written in the form

1 + f ′(x)2 = 1 + x2(x2 + 2) = 1 + x4 + 2x2 = (1 + x2)2.

Taking the square root of both sides, we conclude that the length of the graph is

∫

3

1

√

1 + f ′(x)2 dx =

∫

3

1

(1 + x2) dx =

[

x+
x3

3

]3

1

=
32

3
.



4. Find both the mass and the centre of mass for a thin rod whose density is given by

δ(x) = x2 + 4x+ 1, 0 ≤ x ≤ 2.

The mass of the rod is merely the integral of its density function, namely

M =

∫

2

0

δ(x) dx =

∫

2

0

(x2 + 4x+ 1) dx =

[

x3

3
+ 2x2 + x

]2

0

=
38

3
.

The centre of mass is given by a similar formula and one finds that

x =
1

M

∫

2

0

xδ(x) dx =
3

38

∫

2

0

(x3 + 4x2 + x) dx =
3

38

[

x4

4
+

4x3

3
+

x2

2

]2

0

=
25

19
.

5. A chain that is 4m long has a uniform density of 3kg/m. If the chain is hanging from
the top of a tall building, then how much work is needed to pull it up to the top?

Consider an arbitrarily small part of the chain, say one of length dx, which lies x metres
from the top. The work that is needed to pull this part to the top is then

Work = Force ·Displacement = mg · x = (3 dx)g · x.

Summing up these expressions over all possible values of 0 ≤ x ≤ 4, we conclude that

Work = 3g

∫

4

0

x dx = 3g

[

x2

2

]4

0

= 24g.

6. Find the area of the region enclosed by the graphs of f(x) and g(x) in the case that

f(x) = sin x, g(x) = cos x, 0 ≤ x ≤ π/2.

The two functions are both non-negative on the interval [0, π/2] and one has

f(x) ≤ g(x) ⇐⇒ sin x ≤ cos x ⇐⇒ tan x ≤ 1 ⇐⇒ x ∈ [0, π/4].

In other words, f(x) ≤ g(x) when 0 ≤ x ≤ π/4 and g(x) ≤ f(x) when π/4 ≤ x ≤ π/2, so

Area =

∫

π/4

0

[cos x− sin x] dx+

∫

π/2

π/4

[sin x− cos x] dx

=
[

sin x+ cos x
]π/4

0

+
[

− cos x− sin x
]π/2

π/4

=

√
2

2
+

√
2

2
− 0− 1− 0− 1 +

√
2

2
+

√
2

2
= 2

√
2− 2.



7. The graph of f(x) = 2e6x is rotated around the x-axis over the interval [0, a]. If the
volume of the resulting solid is equal to π, then what is the value of a?

The volume of the resulting solid is the integral of πf(x)2 and this is given by

Volume = π

∫

a

0

4e12x dx = 4π

[

e12x

12

]a

0

=
π

3
(e12a − 1).

Since the volume must be equal to π by assumption, it easily follows that

e12a − 1 = 3 =⇒ e12a = 4 =⇒ 12a = ln 4 =⇒ a =
ln 22

12
=

ln 2

6
.

8. Compute the length of the graph of f(x) = x3/2 − 1

3
x1/2 over the interval [0, 2].

The length of the graph is given by the integral of
√

1 + f ′(x)2. In this case,

f ′(x) =
3

2
x1/2 − 1

6
x−1/2 =⇒ 1 + f ′(x)2 = 1 +

9

4
x+

1

36x
− 1

2
and one may use a common denominator to write this expression in the form

1 + f ′(x)2 =
18x+ (9x)2 + 1

36x
=

(9x+ 1)2

36x
.

Taking the square root of both sides, we conclude that the length of the graph is
∫

2

0

9x+ 1

6
√
x

dx =
1

6

∫

2

0

(

9x1/2 + x−1/2
)

dx =
1

6

[

9x3/2

3/2
+

x1/2

1/2

]2

0

=
7

3

√
2.

9. Show that the function f is integrable on [0, 1] for any given constants a, b when

f(x) =

{

a if x 6= 0
b if x = 0

}

.

Let x0, x1, . . . , xn be the points that divide the interval [0, 1] into n subintervals of equal
length. To show that f is integrable on [0, 1], we need to compute the limit

∫

1

0

f(x) dx = lim
n→∞

n
∑

k=1

f(x∗

k
)∆x

for any choice of points x∗

k
∈ [xk−1, xk]. When x∗

1
> 0, we have x∗

k
> 0 for all k ≥ 1 and so

∫

1

0

f(x) dx = lim
n→∞

n
∑

k=1

a

n
= lim

n→∞

n · a
n
= a.

When x∗

1
= 0, on the other hand, we have x∗

k
> 0 for all k ≥ 2 and the limit is still

∫

1

0

f(x) dx = lim
n→∞

[

b

n
+

n
∑

k=2

a

n

]

= lim
n→∞

[

b

n
+

(n− 1)a

n

]

= a.



10. Compute each of the following improper integrals.

I1 =

∫

∞

2

dx

(x− 1)5
, I2 =

∫

3

2

dx
4
√
x− 2

, I3 =

∫

∞

0

dx

x2 + 1
.

When it comes to the first integral, one easily finds that

I1 = lim
L→∞

∫

L

2

(x− 1)−5 dx = lim
L→∞

[

−1

4
(x− 1)−4

]L

2

=
1

4
.

When it comes to the second integral, one similarly finds that

I2 = lim
a→2+

∫

3

a

(x− 2)−1/4 dx = lim
a→2+

[

4

3
(x− 2)3/4

]3

a

=
4

3
.

Finally, the third integral is related to the inverse tangent function and one has

I3 = lim
L→∞

∫

L

0

dx

x2 + 1
= lim

L→∞

(tan−1 L− tan−1 0) =
π

2
.



MAU11201 – Calculus

Tutorial solutions #8

1. Compute each of the following indefinite integrals.

∫

x2

x3 + 1
dx,

∫

x2

x+ 1
dx.

For the first integral, we use the substitution u = x3 + 1. Since du = 3x2 dx, we get
∫

x2

x3 + 1
dx =

1

3

∫

du

u
=

ln |u|
3

+ C =
ln |x3 + 1|

3
+ C.

For the second integral, we let u = x+ 1. This gives du = dx, so it easily follows that
∫

x2

x+ 1
dx =

∫

(u− 1)2

u
du =

∫

u2 − 2u+ 1

u
du =

∫
(

u− 2 +
1

u

)

du

=
u2

2
− 2u+ ln |u|+ C =

(x+ 1)2

2
− 2(x+ 1) + ln |x+ 1|+ C.

2. Compute each of the following indefinite integrals.

∫

sin2 x · cos3 x dx,
∫

sec5 x · tan x dx.

For the first integral, we use the substitution u = sin x. Since du = cos x dx, we get
∫

sin2 x · cos3 x dx =

∫

sin2 x · cos2 x · cosx dx =

∫

u2(1− u2) du

=

∫

(u2 − u4) du =
u3

3
− u5

5
+ C =

sin3 x

3
− sin5 x

5
+ C.

For the second integral, we let u = sec x. This gives du = sec x tan x dx and so
∫

sec5 x · tan x dx =

∫

u4 du =
u5

5
+ C =

sec5 x

5
+ C.

3. Find the volume of the solid that is obtained by rotating the graph of f(x) = tan x
around the x-axis over the interval [0, π/4].

The volume of the solid is the integral of πf(x)2 and this is given by

Volume = π

∫

π/4

0

tan2 x dx = π

∫

π/4

0

(sec2 x− 1) dx = π
[

tan x− x
]π/4

0

= π − π2

4
.



4. Compute each of the following indefinite integrals.

∫

x3 − x

x2 + 5
dx,

∫

x2 + 5

x3 − x
dx.

When it comes to the first integral, one may use division of polynomials to write

∫

x3 − x

x2 + 5
dx =

∫
(

x− 6x

x2 + 5

)

dx.

To integrate the fraction, we let u = x2 + 5. Since du = 2x dx, we find that

∫

x3 − x

x2 + 5
dx =

x2

2
−
∫

6x dx

x2 + 5
=

x2

2
−

∫

3 du

u

=
x2

2
− 3 ln u+ C =

x2

2
− 3 ln(x2 + 5) + C.

When it comes to the second integral, one may use partial fractions to write

x2 + 5

x3 − x
=

x2 + 5

x(x− 1)(x+ 1)
=

A

x
+

B

x− 1
+

C

x+ 1

for some constants A, B and C. Clearing denominators gives rise to the identity

x2 + 5 = A(x− 1)(x+ 1) + Bx(x+ 1) + Cx(x− 1)

and this should be valid for all x. Let us then look at some special values of x to get

x = −1, 0, 1 =⇒ 6 = 2C, 5 = −A, 6 = 2B.

This gives A = −5 and B = C = 3, so the second integral can be expressed in the form

∫

x2 + 5

x3 − x
dx =

∫
(

−5

x
+

3

x− 1
+

3

x+ 1

)

dx

= −5 ln |x|+ 3 ln |x− 1|+ 3 ln |x+ 1|+K.

5. Compute each of the following indefinite integrals.

∫

sin−1 x dx,

∫

e
√

x dx.

For the first integral, let u = sin−1 x and dv = dx. Then du = dx
√

1−x2
and v = x, so

∫

sin−1 x dx = uv −
∫

v du = x sin−1 x−
∫

x dx√
1− x2

.



To compute the rightmost integral, we let w = 1− x2. This gives dw = −2x dx and
∫

sin−1 x dx = x sin−1 x+
1

2

∫

dw√
w

= x sin−1 x+
1

2

∫

w−1/2 dw

= x sin−1 x+ w1/2 + C = x sin−1 x+
√
1− x2 + C.

Finally, we integrate e
√

x. If we let u =
√
x, then x = u2 and dx = 2u du, so

∫

e
√

x dx = 2

∫

ueu du.

Once we now integrate by parts with dv = 2eu du, we get v = 2eu and also
∫

e
√

x dx = 2ueu − 2

∫

eu du = 2ueu − 2eu + C = 2
√
xe

√

x − 2e
√

x + C.

6. Find the area of the region enclosed by the graphs of f(x) = e2x and g(x) = 4ex − 3.

Letting z = ex for simplicity, we get f(x) = z2 and g(x) = 4z − 3. It easily follows that

f(x) ≤ g(x) ⇐⇒ z2 ≤ 4z − 3 ⇐⇒ (z − 3)(z − 1) ≤ 0 ⇐⇒ 1 ≤ z ≤ 3.

In other words, f(x) ≤ g(x) if and only if 0 ≤ x ≤ ln 3, so the area of the region is

Area =

∫

ln 3

0

[g(x)− f(x)] dx =

∫

ln 3

0

(4ex − 3− e2x) dx

=

[

4ex − 3x− 1

2
e2x

]ln 3

0

= 4− 3 ln 3.

7. Compute each of the following indefinite integrals.

∫

dx

(1 + x)
√
x
,

∫

x(ln x)2 dx.

For the first integral, we let u =
√
x. This gives x = u2 and dx = 2u du, so

∫

dx

(1 + x)
√
x
=

∫

2u du

(1 + u2)u
=

∫

2 du

1 + u2
= 2 tan−1 u+ C = 2 tan−1

√
x+ C.

For the second integral, we let u = (ln x)2 and dv = x dx. Then du = 2 lnx

x
dx and v = x

2

2
, so

∫

x(ln x)2 dx =
x2

2
(ln x)2 −

∫

2 ln x

x
· x

2

2
dx =

x2

2
(ln x)2 −

∫

x(ln x) dx.

Next, we take u = ln x and dv = x dx. Since du = dx

x
and v = x

2

2
, we conclude that

∫

x(ln x)2 dx =
x2

2
(ln x)2 − x2

2
ln x+

∫

x

2
dx =

x2

2
(ln x)2 − x2

2
ln x+

x2

4
+ C.



8. Compute each of the following indefinite integrals.

∫

2 dx

(x2 + 1)2
,

∫

x2
√
1− x2 dx.

For the first integral, let x = tan θ for some angle −π

2
< θ < π

2
and note that

x2 + 1 = tan2 θ + 1 = sec2 θ, dx = sec2 θ dθ.

The given integral can thus be expressed in the form
∫

2 dx

(x2 + 1)2
=

∫

2 sec2 θ dθ

sec4 θ
=

∫

2 cos2 θ dθ.

Using the half-angle formula for cosine, one may now simplify to arrive at
∫

2 dx

(x2 + 1)2
=

∫

(1 + cos(2θ)) dθ =

(

θ +
sin(2θ)

2

)

= (θ + sin θ cos θ) .

We need to express this equation in terms of x = tan θ. When x ≥ 0, the angle θ appears
in a right triangle with an opposite side of length x and an adjacent side of length 1. This
makes the hypotenuse of length

√
x2 + 1, so one finds that

∫

2 dx

(x2 + 1)2
= tan−1 x+

x√
x2 + 1

· 1√
x2 + 1

= tan−1 x+
x

x2 + 1
.

When x = tan θ ≤ 0, the expression θ + sin θ cos θ changes by a minus sign and the same is
true for the right hand side of the last equation. Thus, the equation remains valid.

Finally, we look at the integral of x2
√
1− x2. Taking x = sin θ, we get

∫

x2
√
1− x2 dx =

∫

sin2 θ cos2 θ dθ =

∫

1− cos(2θ)

2
· 1 + cos(2θ)

2
dθ

=
1

4

∫

(1− cos2(2θ)) dθ =
1

4

∫
(

1− 1 + cos(4θ)

2

)

dθ

=
1

8

∫

(1− cos(4θ)) dθ =
1

8

(

θ − 1

4
sin(4θ)

)

.

It remains to simplify the right hand side. The addition formulas for sine and cosine give

sin(4θ) = 2 sin(2θ) cos(2θ) = 4 sin θ cos θ · (cos2 θ − sin2 θ).

Since sin θ = x, one has cos θ =
√

1− sin2 θ =
√
1− x2 and so

sin(4θ) = 4x
√
1− x2 · (1− x2 − x2) = 4x(1− x2)3/2 − 4x3

√
1− x2.

Once we now combine the above computations, we may finally conclude that
∫

x2
√
1− x2 dx =

1

8
sin−1 x− x

8
(1− x2)3/2 +

x3

8

√
1− x2 + C.



9. Let a > 0 be given. Use integration by parts to find a reduction formula for

In =

∫

dx

(x2 + a2)n
.

If we let u = (x2 + a2)−n and dv = dx, then du = −2nx(x2 + a2)−n−1 dx and v = x, so

In = x(x2 + a2)−n + 2n

∫

x2(x2 + a2)−n−1 dx

=
x

(x2 + a2)n
+ 2n

∫

x2 + a2 − a2

(x2 + a2)n+1
dx

=
x

(x2 + a2)n
+ 2nIn − 2na2In+1.

Rearranging terms, one may thus express the integral In+1 in terms of In to find that

In+1 =
2n− 1

2na2
· In +

x

2na2(x2 + a2)n
.

10. Use integration by parts to compute the indefinite integral

∫

sin(ln x) dx.

Letting u = sin(ln x) and dv = dx, we get du = cos(ln x) · dx

x
and v = x, so

∫

sin(ln x) dx = x sin(ln x)−
∫

cos(ln x) dx.

Letting u = cos(ln x) and dv = dx, we similarly get du = − sin(ln x) · dx

x
and v = x, so

∫

cos(ln x) dx = x cos(ln x) +

∫

sin(ln x) dx.

Once we now combine the last two equations, we get an identity of the form

∫

sin(ln x) dx = x sin(ln x)− x cos(ln x)−
∫

sin(ln x) dx.

Moving the rightmost integral to the left hand side, we may thus conclude that

∫

sin(ln x) dx =
x

2
sin(ln x)− x

2
cos(ln x) + C.



MAU11201 – Calculus

Tutorial solutions #9

1. Compute each of the following indefinite integrals.

∫

e2x cos(ex) dx,

∫

sin3 x

cos6 x
dx.

For the first integral, we let u = ex. Since du = ex dx, one finds that
∫

e2x cos(ex) dx =

∫

ex cos(ex) · ex dx =

∫

u cos u du.

Next, we integrate by parts with dv = cos u du. This gives v = sin u and so
∫

e2x cos(ex) dx = u sin u−
∫

sin u du = u sin u+ cos u+ C

= ex sin(ex) + cos(ex) + C.

For the second integral, it is better to simplify the given expression and write
∫

sin3 x

cos6 x
dx =

∫

tan3 x

cos3 x
dx =

∫

sec3 x · tan3 x dx.

To compute this integral, we let u = secx. Then du = secx tan x dx and we get
∫

sin3 x

cos6 x
dx =

∫

sec2 x · tan2 x · sec x tan x dx =

∫

u2(u2 − 1) du

=

∫

(u4 − u2) du =
1

5
u5 − 1

3
u3 + C =

sec5 x

5
− sec3 x

3
+ C.

2. Compute each of the following indefinite integrals.

∫ √
x

x+ 1
dx,

∫ √
x

x− 1
dx.

In each case, we let u =
√
x to simplify. Since x = u2, we have dx = 2u du and

∫ √
x

x+ 1
dx =

∫

u

u2 + 1
· 2u du =

∫

2u2

u2 + 1
du.

This is a rational function that can be simplified using division of polynomials, so
∫ √

x

x+ 1
dx =

∫

2(u2 + 1)− 2

u2 + 1
du =

∫
(

2− 2

u2 + 1

)

du

= 2u− 2 tan−1 u+ C = 2
√
x− 2 tan−1

√
x+ C.



For the second integral, we proceed in a similar fashion to find that

∫ √
x

x− 1
dx =

∫

2u2

u2 − 1
du =

∫
(

2 +
2

u2 − 1

)

du.

In this case, however, one needs to use partial fractions to write

2

u2 − 1
=

2

(u+ 1)(u− 1)
=

A

u+ 1
+

B

u− 1

for some constants A,B that need to be determined. Clearing denominators gives

2 = A(u− 1) + B(u+ 1),

so we may take u = ±1 to find that 2B = 2 = −2A. It easily follows that

∫ √
x

x− 1
dx =

∫
(

2 +
1

u− 1
− 1

u+ 1

)

du = 2u+ ln |u− 1| − ln |u+ 1|+ C

= 2
√
x+ ln |

√
x− 1| − ln(

√
x+ 1) + C.

3. Show that each of the following sequences converges.

an =

√

n2 + 1

n3 + 2
, bn =

sinn

n2
, cn = n1/n.

Since the limit of a square root is the square root of the limit, it should be clear that

lim
n→∞

n2 + 1

n3 + 2
= lim

n→∞

n2

n3
= lim

n→∞

1

n
= 0 =⇒ lim

n→∞

an =
√
0 = 0.

The limit of the second sequence is also zero because −1/n2 ≤ bn ≤ 1/n2 for each n ≥ 1.
This means that bn lies between two sequences that converge to zero. Finally, one has

cn = n1/n =⇒ ln cn = lnn1/n =
lnn

n
.

Since lnn → ∞ as n → ∞, one may use L’Hôpital’s rule to conclude that

lim
n→∞

ln cn = lim
n→∞

1/n

1
= 0 =⇒ lim

n→∞

cn = e0 = 1.



4. Define a sequence {an} by setting a1 = 1 and an+1 =
√
6 + an for each n ≥ 1. Show

that 1 ≤ an ≤ an+1 ≤ 3 for each n ≥ 1, use this fact to conclude that the sequence
converges and then find its limit.

Since the first two terms are a1 = 1 and a2 =
√
7, the statement

1 ≤ an ≤ an+1 ≤ 3

does hold when n = 1. Suppose that it holds for some n, in which case

7 ≤ 6 + an ≤ 6 + an+1 ≤ 9 =⇒
√
7 ≤ an+1 ≤ an+2 ≤ 3

=⇒ 1 ≤ an+1 ≤ an+2 ≤ 3.

In particular, the statement holds for n + 1 as well, so it actually holds for all n ∈ N. This
shows that the given sequence is monotonic and bounded, hence also convergent; denote its
limit by L. Using the definition of the sequence, we then find that

an+1 =
√
6 + an =⇒ lim

n→∞

an+1 = lim
n→∞

√
6 + an =⇒ L =

√
6 + L.

This leads to the quadratic equation L2 = 6 + L which implies that L = −2, 3. Since the
terms of the sequence satisfy 1 ≤ an ≤ 3, however, the limit must be L = 3.

5. Use the formula for a geometric series to compute each of the following sums.

∞
∑

n=0

2n

7n
,

∞
∑

n=1

3n+2

23n+1
,

∞
∑

n=2

3n+1

4n+2
.

The first sum is the sum of a geometric series with x = 2/7 and one easily finds that

∞
∑

n=0

2n

7n
=

∞
∑

n=0

(

2

7

)n

=
1

1− 2/7
=

7

5
.

The second sum is the sum of a geometric series with x = 3/8 and we similarly get

∞
∑

n=1

3n+2

23n+1
=

32

2

∞
∑

n=1

(

3

8

)n

=
9

2
· 3/8

1− 3/8
=

27

10
.

To compute the third sum, we shift the index of summation to conclude that

∞
∑

n=2

3n+1

4n+2
=

∞
∑

n=1

3n+1+1

4n+1+2
=

9

64

∞
∑

n=1

(

3

4

)n

=
9

64
· 3/4

1− 3/4
=

27

64
.



6. Compute each of the following indefinite integrals.

∫

2x+ 3

x2 − 4x+ 3
dx,

∫

2x+ 3

x2 − 4x+ 5
dx.

When it comes to the first integral, one may use partial fractions to write

2x+ 3

x2 − 4x+ 3
=

2x+ 3

(x− 1)(x− 3)
=

A

x− 1
+

B

x− 3

for some constants A and B. Clearing denominators gives rise to the identity

2x+ 3 = A(x− 3) + B(x− 1)

and this should be valid for all x. Let us then look at some special values of x to get

x = 1, 3 =⇒ 5 = −2A, 9 = 2B.

This gives A = −5/2 and B = 9/2, so it easily follows that

∫

2x+ 3

x2 − 4x+ 3
dx =

∫
(

− 5/2

x− 1
+

9/2

x− 3

)

dx = −5

2
ln |x− 1|+ 9

2
ln |x− 3|+ C.

When it comes to the second integral, one may complete the square to write

∫

2x+ 3

x2 − 4x+ 5
dx =

∫

2x+ 3

x2 − 4x+ 4 + 1
dx =

∫

2x+ 3

(x− 2)2 + 1
dx.

Using the substitution u = x− 2, we now get du = dx and also x = u+ 2, so

∫

2x+ 3

x2 − 4x+ 5
dx =

∫

2u+ 7

u2 + 1
du =

∫

2u

u2 + 1
du+

∫

7

u2 + 1
du

= ln(u2 + 1) + 7 tan−1 u+ C

= ln(x2 − 4x+ 5) + 7 tan−1(x− 2) + C.

7. Compute each of the following indefinite integrals.

∫ √
1− x2 dx,

∫

√
1− x√
1 + x

dx.

For the first integral, we let x = sin θ. Since dx = cos θ dθ, this gives

∫ √
1− x2 dx =

∫

cos θ · cos θ dθ =
1

2

∫

(1 + cos(2θ)) dθ =
θ

2
+

sin(2θ)

4
+ C.



Since sin θ = x and cos θ =
√
1− x2, it easily follows that

∫ √
1− x2 dx =

1

2
sin−1 x+

sin θ cos θ

2
+ C =

1

2
sin−1 x+

x

2

√
1− x2 + C.

The second integral seems a bit difficult, but one may express it in the form

∫

√
1− x√
1 + x

dx =

∫

√
1− x√
1 + x

·
√
1− x√
1− x

dx =

∫

1− x√
1− x2

dx.

Using this fact along with the substitution u = 1− x2, we conclude that

∫

√
1− x√
1 + x

dx =

∫

dx√
1− x2

−
∫

x dx√
1− x2

= sin−1 x+

∫

du

2
√
u

= sin−1 x+
√
u+ C = sin−1 x+

√
1− x2 + C.

8. Define a sequence {an} by setting a1 = 1 and an+1 = 3 +
√
an for each n ≥ 1. Show

that 1 ≤ an ≤ an+1 ≤ 9 for each n ≥ 1, use this fact to conclude that the sequence
converges and then find its limit.

Since the first two terms are a1 = 1 and a2 = 3 + 1 = 4, the statement

1 ≤ an ≤ an+1 ≤ 9

does hold when n = 1. Suppose that it holds for some n, in which case

1 ≤ √
an ≤ √

an+1 ≤ 3 =⇒ 4 ≤ an+1 ≤ an+2 ≤ 6

=⇒ 1 ≤ an+1 ≤ an+2 ≤ 9.

In particular, the statement holds for n + 1 as well, so it actually holds for all n ∈ N. This
shows that the given sequence is monotonic and bounded, hence also convergent; denote its
limit by L. Using the definition of the sequence, we then find that

an+1 = 3 +
√
an =⇒ lim

n→∞

an+1 = 3 + lim
n→∞

√
an =⇒ L = 3 +

√
L.

This gives the quadratic equation (L− 3)2 = L, which one may easily solve to get

L2 − 6L+ 9 = L =⇒ L2 − 7L+ 9 = 0 =⇒ L =
7±

√
13

2
.

Since L− 3 =
√
L ≥ 0, however, we also have L ≥ 3 and the limit is L = 1

2
(7 +

√
13).



9. An ant starts out at the origin in the xy-plane and walks 1 unit south, then 1/2 units
east, then 1/4 units north, then 1/8 units west, then 1/16 units south, and so on. If it
continues like that indefinitely, which point in the xy-plane will it eventually reach?

When it comes to the vertical displacement of the ant, this is given by the sum

y = −1 +
1

4
− 1

16
+ . . . = −

∞
∑

n=0

(

−1

4

)n

.

Using the explicit formula for the sum of a geometric series, one now finds that

y = − 1

1 + 1/4
= −4

5
.

When it comes to the horizontal displacement of the ant, one similarly has

x =
1

2
− 1

8
+

1

32
− . . . =

1

2

∞
∑

n=0

(

−1

4

)n

=
1/2

1 + 1/4
=

2

5
.

Since the ant starts out at the origin, it will eventually reach the point (2/5,−4/5).

10. Suppose the series
∑

∞

n=1
an converges. Show that the series

∑

∞

n=1

1

1+an
diverges.

Since
∑

∞

n=1
an converges, we must have limn→∞ an = 0 by the nth term test, so

lim
n→∞

1

1 + an
= 1.

Using the nth term test once again, we conclude that
∑

∞

n=1

1

1+an
diverges.
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1. Test each of the following series for convergence.

∞∑
n=1

2 + sinn

n
,

∞∑
n=1

2 + sinn

n2
.

When it comes to the first series, we use comparison with 1/n. Since

∞∑
n=1

2 + sinn

n
≥

∞∑
n=1

1

n
,

the first series is larger than a divergent p-series, so it diverges. A similar argument gives

∞∑
n=1

2 + sinn

n2
≤

∞∑
n=1

3

n2
,

so the second series is smaller than a convergent p-series and thus converges as well.

2. Test each of the following series for convergence.

∞∑
n=1

e1/n

n
,

∞∑
n=1

ne1/n

n3 + 1
.

When it comes to the first series, we use the limit comparison test with

an =
e1/n

n
, bn =

1

n
.

To show that the limit comparison test is applicable in this case, we note that

lim
n→∞

an
bn

= lim
n→∞

e1/n = e0 = 1.

Since
∑∞

n=1 bn is a divergent p-series, we conclude that
∑∞

n=1 an diverges as well. When it
comes to the second series, we use the limit comparison test with

an =
ne1/n

n3 + 1
, bn =

1

n2
.

In this case, the limit comparison test is still applicable, as one can easily check that

lim
n→∞

an
bn

= lim
n→∞

n3e1/n

n3 + 1
= lim

n→∞
e1/n = e0 = 1.

Since
∑∞

n=1 bn is a convergent p-series, we conclude that
∑∞

n=1 an converges as well.



3. Test each of the following series for convergence.

∞∑
n=1

lnn

n
,

∞∑
n=1

lnn

n!
.

When it comes to the first series, we use the comparison test. Since

∞∑
n=1

lnn

n
=
∞∑
n=2

lnn

n
≥

∞∑
n=2

ln 2

n
,

the first series is larger than a divergent p-series and thus diverges. When it comes to the
second series, we use the ratio test together with L’Hôpital’s rule. This gives

L = lim
n→∞

an+1

an
= lim

n→∞

ln(n + 1)

lnn
· n!

(n + 1)!
= lim

n→∞

1/(n + 1)

1/n
· lim
n→∞

1

n + 1
= 0.

Since L < 1, it follows by the ratio test that the second series converges.

4. Find the radius of convergence for each of the following power series.

∞∑
n=0

nxn

3n
,

∞∑
n=0

(n!)2

(2n)!
· xn.

In each case, we use the ratio test to find the radius of convergence. In the first case,

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

n + 1

n
· |x|

n+1

|x|n
· 3n

3n+1
= lim

n→∞

n + 1

3n
· |x| = |x|

3
.

In particular, the series converges when |x| < 3 and it diverges when |x| > 3, so its radius of
convergence is R = 3. For the second series, we similarly have

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n + 1)!

n!
· (n + 1)!

n!
· (2n)!

(2n + 2)!
· |x|

n+1

|x|n

= lim
n→∞

(n + 1)2 · |x|
(2n + 1)(2n + 2)

= lim
n→∞

n2|x|
4n2

=
|x|
4
.

Thus, the series converges when |x| < 4 and diverges when |x| > 4, so the radius is R = 4.



5. Assuming that |x| < 1, use the formula for a geometric series to show that

∞∑
n=0

nxn =
x

(1− x)2
.

Since |x| < 1 by assumption, one may use the formula for a geometric series to get

∞∑
n=0

xn =
1

1− x
= (1− x)−1.

This power series can be differentiated term by term, so it easily follows that

∞∑
n=0

nxn−1 = (1− x)−2 =⇒
∞∑
n=0

nxn = x(1− x)−2 =
x

(1− x)2
.

6. Find the radius of convergence for each of the following power series.

∞∑
n=0

nx2n

4n
,

∞∑
n=0

3nxn

2n + 1
.

In each case, we use the ratio test to find the radius of convergence. In the first case,

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

n + 1

n
· x

2n+2

x2n
· 4n

4n+1
= lim

n→∞

(n + 1)x2

4n
=

x2

4
.

Thus, the series converges when x2 < 4 and diverges when x2 > 4, so the radius is R = 2.
For the second series, we similarly have

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

3n+1

3n
· |x|

n+1

|x|n
· 2n + 1

2n + 3
= lim

n→∞
3|x| · 2n + 1

2n + 3
= 3|x|.

Thus, the series converges when |x| < 1
3

and diverges when |x| > 1
3
, so the radius is R = 1

3
.

7. Use differentiation to show that the following power series is equal to ln(1 + x).

f(x) =
∞∑
n=0

(−1)nxn+1

n + 1
, |x| < 1.

First of all, we note that this power series converges by the ratio test because

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

|x|n+2

|x|n+1
· n + 1

n + 2
= |x| < 1.



Differentiating the series term by term, one obtains the geometric series

f ′(x) =
∞∑
n=0

(−1)n(n + 1)xn

n + 1
=
∞∑
n=0

(−x)n.

Since |x| < 1 by assumption, this series actually converges and one easily finds that

f ′(x) =
1

1− (−x)
=

1

1 + x
=⇒ f(x) = ln(1 + x) + C.

Since f(0) = 0, however, we must have 0 = ln 1 + C = C and thus f(x) = ln(1 + x).

8. Use differentiation to show that the following power series is equal to tan−1 x.

f(x) =
∞∑
n=0

(−1)nx2n+1

2n + 1
, |x| < 1.

First of all, we note that this power series converges by the ratio test because

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

|x|2n+3

|x|2n+1
· 2n + 1

2n + 3
= |x|2 < 1.

Differentiating the series term by term, one obtains the geometric series

f ′(x) =
∞∑
n=0

(−1)n(2n + 1)x2n

2n + 1
=
∞∑
n=0

(−x2)n.

Since |x| < 1 by assumption, this series actually converges and one easily finds that

f ′(x) =
1

1− (−x2)
=

1

1 + x2
=⇒ f(x) = tan−1 x + C.

Since f(0) = 0, however, we must have 0 = tan−1 0 + C = C and thus f(x) = tan−1 x.

9. Let a ∈ R be a given number. Find the radius of convergence for the power series

f(x) =
∞∑
n=0

a(a− 1)(a− 2) · · · (a− n + 1)

n!
· xn.

To find the radius of convergence, we use the ratio test. In this case, we have

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ a(a− 1)(a− 2) · · · (a− n)

a(a− 1)(a− 2) · (a− n + 1)
· n!

(n + 1)!
· x

n+1

xn

∣∣∣∣
= lim

n→∞

∣∣∣∣a− n

n + 1
· x
∣∣∣∣ = |x|.

Thus, the series converges when |x| < 1 and diverges when |x| > 1, so the radius is R = 1.



10. Show that
∑∞

n=0 any
n converges absolutely, if

∑∞
n=0 anx

n converges and |y| < |x|.

Since the series
∑∞

n=0 anx
n converges, its nth term approaches zero as n→∞ and so

|anxn| ≤ 1 for large enough n.

Suppose that this is true for all n ≥ N , for instance. One may then conclude that

∞∑
n=N

|anyn| =
∞∑

n=N

|anxn| ·
∣∣∣y
x

∣∣∣n ≤ ∞∑
n=N

∣∣∣y
x

∣∣∣n .
The series on the right hand side is a geometric series with ratio r < 1 and thus converges.
This implies that

∑∞
n=0 |anyn| converges as well, so

∑∞
n=0 any

n converges absolutely.
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