MAU11201 — Calculus
Homework #1 solutions

1. Find the domain and the range of the function f which is defined by

2 —3x

f(@) = 7T—2x

The domain consists of all points x # 7/2. To find the range, we note that

2—-3
y:7 296 = Ty—-2zy=2-3x <+ IJr—2a0y=2-T7Ty
—2x
2—Ty
<~ 3—2y)=2-7 <~ = .
(3 — 2y) y =375,

The rightmost formula determines the value of x that satisfies y = f(x). Since the formula

makes sense for any number y # 3/2, the range consists of all numbers y # 3/2.

2. Show that the function f: (0,1) — (0, 2) is bijective in the case that

4x

To show that the given function is injective, we note that

4 4
11 = T2 > 121‘1 — 41’11’2 = 12%2 — 4.2131332
3 — I 3 — i)

- 1221 = 1229 - 1 = Z9.

To show that the given function is surjective, we note that

A 3y
<— 3y — =4 <— 3y = 4 < = —
g y —wy =4z y=x(y+4) =

’y:

The rightmost equation determines the value of = such that y = f(z) and we need to check

that 0 <z < 1if and only if 0 < y < 2. When0<y<2,wehavex:%>Oandalso

3y y+4-3y 4-2y 2(2-y)

l—z=1- =
y+4 y+4 y+4 y+4

> 0,

so 0 < x < 1. Conversely, suppose that 0 < z < 1. Then y = ;—”x > (0 and also

4 6—2r—4 6(1 —
2—y=2-— - ’ :z::( x>>0 = O<y<2
3—x 3—x 3—x




3. Find the domain and the range of the function f which is defined by

fa) = /4 Va.

The domain consists of all numbers z with z > 0 and 4 — y/z > 0. This gives /z < 4
and also « < 16, so the domain is [0, 16]. To find the range, we note that

y=1\/4d—vVr = y*=4—-\V2 = Vr=4-y = ax=4-y)~

Note that the first equation implies y > 0, while the third one implies 4 — y* > 0. These
restrictions should be observed before squaring the equations. The range is thus [0, 2].

4. Express the following polynomials as the product of linear factors.

f(z) = 3% + 42 — 52 — 2, g(z) =2 — — + =.

When it comes to f(x), the possible rational roots are +1,4+2,4+1/3,£2/3. Checking
these possibilities, one finds that x = 1, # = —2 and z = —1/3 are all roots. According to
the factor theorem, each of z — 1, x + 2 and x 4 1/3 is thus a factor and one has

fl@)=3z -1 +2)(x+1/3) = (z — 1)(z +2)(3z + 1).
When it comes to g(z), let us first clear denominators and write
6g(z) = 62° — 72* + 1.

The only possible rational roots are £1,+1/2,4+1/3, £1/6. Checking these possibilities, one
finds that x =1, x = 1/2 and = —1/3 are all roots. It easily follows that

6g(x) = 6(z — (@ —1/2)(x +1/3) = g(z) = (v —1)(z — 1/2)(z + 1/3).

(5. Determine all angles 0 < 6 < 27 such that 4sin?6 + 4sinf = 3. )

Letting o = sin @ for convenience, one finds that 422 4+ 42 — 3 = 0 and

4+ JT6 7412 4438 13
v 8 T T tTaTy

Since z = sinf must lie between —1 and 1, the only relevant solution is x = sinf = 5. In
view of the graph of the sine function, there should be two angles 0 < 6 < 27 that satisfy

this condition. The first one is §; = % and the second one is 0y =7 — & = %”.

N[



MAU11201 — Calculus
Homework #2 solutions

1. Determine the inverse function f~! in each of the following cases.

_7-5°-3

f@) = gloga(2o—=6) =1, f(5) = o,

When it comes to the first case, one can easily check that
3(y+1) =logy(2r —6) +—= 2% =27 -6 <— 2% =g_3
so the inverse function is defined by f~!(y) = 23¥*2 4+ 3. When it comes to the second case,

7.5 -3

= &&= 4y-5"+2y=7-5"-3 <<= 2 3=(7—4y) 5"
1552 Yy 5"+ 2y y+3=(7-4y)

Y

2y+3
T—4y’

so the inverse function is defined by f~'(y) = log, 22

and this gives 5* = iy

2. Simplify each of the following expressions.

cos (sin~" z), cos (tan~' z) logs(54) — 3logs(18) + log4(36).

To simplify the first expression, let # = sin™' = and note that sin® = x. When = > 0,
the angle 6 arises in a right triangle with an opposite side of length z and a hypotenuse of
length 1. It follows by Pythagoras’ theorem that the adjacent side has length /1 — 22, so
the definition of cosine gives

1) = cos 0 = adjacent side _ -

cos(sin™
( hypotenuse

When z < 0, the last equation holds with —z instead of z. This changes the term sin™!x
by a minus sign, but the cosine remains unchanged, so the equation is still valid.

To simplify the second expression, let # = tan~! 2 and note that tanf = 2. When x > 0,
the angle @ arises in a right triangle with an opposite side of length  and an adjacent side
of length 1. It follows by Pythagoras’ theorem that the hypotenuse has length /1 4+ 22, so
the definition of cosine gives

adjacent side 1
hypotenuse /1 + 22

When 2 < 0, the last equation holds with —x instead of z. This changes the term tan=!x
by a minus sign, but the cosine remains unchanged, so the equation is still valid.
As for the third expression, one may use the properties of logarithms to get

54 - 36 3.2 )
1—83 = 10g3§ = 10g33 = —1.

cos(tan™' x) = cos ) =

log4(54) — 3logs(18) + log4(36) = logs



3. Use the -0 definition of limits to compute lim, 3 f(x) in the case that
3z —4 ifx <3
f(x)_{élx—? ifac>3}'

In this case, z is approaching 3 and f(z) is either 3z — 4 or 4z — 7. We thus expect the
limit to be L = 5. To prove this formally, we let ¢ > 0 and estimate the expression

f(2) — 5| = 3z —9] ifx<3 | [ 3z—-3 ifx<3
S| Mx—12] >3 [ | 4lz—3 ifx>3 [’
If we assume that 0 # |x — 3| < §, then we may use the last equation to get

|f(x) — 5| < 4]z — 3| < 40.

Since our goal is to show that |f(z) — 5| < &, an appropriate choice of § is thus § = /4.

4. Compute each of the following limits.

3 _ 2 -9 23_ 2 4 4
L:hm?)x Tr* 4 62 7 M — lim x° — Tz° + 4z + .

z—1 rz—1 =2 (ZE - 2)2

When it comes to the first limit, division of polynomials gives

32 — 7% + 62 — 2
L—lim 2 O 2 g (30 —dr+2) =3 —4 42— 1.
rx—1 QE—]_ r—1

When it comes to the second limit, division of polynomials gives

223 — Ta? + 4z + 4
M=lim = TR g p 1) =44 1=5.
r—2 €T —41‘+4 r—2

CE). Use the e-0 definition of limits to compute lim, .o (3% — 4z + 7). )

Let f(z) = 3z% — 4z + T for convenience. Then f(2) = 11 and one has
|f(x) = f(2)| = |32® — 4z — 4] = |z — 2| - |3z + 2.

The factor |z — 2| is related to our usual assumption that 0 # |x — 2| < J. To estimate the
remaining factor |3z 4 2|, we assume that § < 1 for simplicity and we note that

lr—2/<i<1l = -—-l<zx-2<1
— l<z<3 = 5<3r+2<1L

Combining the estimates |z — 2| < § and |3z + 2| < 11, one may then conclude that
@)= F@) = e —2| - [32+2| < 116 < =,
as long as 6 < e/11 and § < 1. An appropriate choice of § is thus § = min(e/11,1).



MAU11201 — Calculus
Homework #3 solutions

1. Show that there exists a real number 0 < x < 7/2 that satisfies the equation

rsinx +xcosx = 1.

Consider the function f which is defined as the difference of the two sides, namely
f(z) =xsinz +zcosx — 1.

Being a composition of continuous functions, f is then continuous and we also have

FO)=-1<0,  fr/2)=1-1=""2

In view of Bolzano’s theorem, this already implies that f has a root 0 < = < 7/2.

> 0.

2. For which values of a, b is the function f continuous at the point x = 37 Explain.

422 + ax + b ifz <3
flz) = a+b—2 ifx=3
223 —bxr+a ifzx>3

Since f is a polynomial on the intervals (—oo, 3) and (3, 4+00), one easily finds that
lim f(z)= lim (42® + az +b) = 36 + 3a + b,
T3~ T3~
lim f(z) = lim (22° — bx + a) = 54 — 3b + a.
+ z—31

z—3

In particular, the function f is continuous at the given point if and only if
36+3a+b=54—-3b+a=a+b-2.
Solving this system of equations, we obtain a unique solution which is given by
54—-3b=b—-2 = 4b=56 — b=14 = a=-10.

In other words, f is continuous at the given point if and only if a = —19 and b = 14.

3. Show that f(z) = 22° — 32® — 5z + 1 has three roots in the interval (—2,2). Hint:
you need only consider the values that are attained by f at the points £2, £1 and 0.

Being a polynomial, the given function is continuous and one can easily check that

f(=2)=-29,  f(-1)=7, f(0)=1, f1)=-5  f(2)=3L

Since the values f(—2) and f(—1) have opposite signs, f has a root that lies in (-2, —1).
The same argument yields a second root in (0, 1) and also a third root in (1,2).



4. Compute each of the following limits.

2rt — 422 3 _ 4
L= lm 229 F°  pp_ oy £ 0TF4
z—too 3zt — To + 2 z—3— 13 —8x — 3

Since the first limit involves infinite values of z, it should be clear that

.2zt — 42 +5 .27t
L= lm ———— = lim —
z—4o0 3xd — T + 2 z——4o00 3t

2
=3
For the second limit, the denominator becomes zero when x = 3, while the numerator is
nonzero at that point. Thus, one needs to factor the denominator and this gives

. 3 —br+4 ) 16
M = lim = lim —— = —o0.
e=3- (x —3)(x2+3z+1) -3 19(z —3)

5. Use the definition of the derivative to compute f’(z() in each of the following cases.

f(z) = 3z + 1) fz) = (z* — 1)

The derivative of the first function is given by the limit

(3z +1)* — (3xg + 1)? (3 — 3x0) (32 + 3z + 2)

f'(zo) = lim = lim
T—T0 T — X T—xo T — o
= lim 3(3x + 329+ 2) = 3(6x + 2) = 6(3x¢ + 1).
T—T0

The derivative of the second function is given by the limit
e VR U | )
T—x0 xr — X T—x0 r — 2o

= lim (2 + z0)(z® + 22 — 2) = 220(22% — 2) = 4ao(zd — 1).

T—T0




MAU11201 — Calculus
Homework #4 solutions

1. Compute the derivative y' = g—z in each of the following cases.

y = In(tanz) + 2(sec z)°, y = tan"* (sin(27)).

When it comes to the first function, one may use the chain rule to get

1
I = < (tanz)" + 10(sec z)* - (secx)
Y = —— - (tana) +10(sec)! - (sec)
2
sec’ x
= csec’z + 10sect z - secztanz = + 10sec® x - tan .
tanx tanx

When it comes to the second function, one similarly finds that

, 1 2 cos(2x)

= ———— -sin(22) = :
sin?(2z) + 1 (22) sin?(2x) + 1

[2. Compute the derivative ¢y = Z—z in the case that y? cosx + x3e¥ = x2y3.

Differentiating both sides of the given equation, one finds that
2uy’ cosx — y? sinx + 3z2e? + x3e¥y’ = 221 + 322y
We now collect the terms that contain 3’ on the left hand side and we get
(2y cos x + x2e¥ — 3x%y?)y’ = 2xy® + y*sinx — 3z%eV.
Solving this equation for 3/, one may thus conclude that

, 2xy® +y’sinx — 3ae?

~ 2ycosx 4 x3e¥ — 3x2y?’

3. Compute the derivative f'(z¢) in the case that

(23 4 2)3 - e - cos(5 tan z)

@) = o

5 .230:0.




First, we use logarithmic differentiation to determine f’(z). In this case, we have
In|f(x)] =In|z® + 2> + Ine* 4 In | cos(5tan z)| + In |2 + 1|71/
= 31n|2® + 2| + 42 + In| cos(5 tan )| — %ln |2° + 1.
Differentiating both sides of this equation, one easily finds that

fl(x)  3-3a? _ sin(5tanw)-5sec’x  32°
f(z)  a3+2 cos(Htan x) 2(z3 + 1)

To compute the derivative f’(0), one may then substitute x = 0 to conclude that

/'(0)

o) ~0TaT0-0=4 = fO)=4f(0) =32

4. Show that the derivative of the inverse tangent function is given by

1

1\ _
(tan :E) Bl

Using Theorem 3.19 with f(z) = tanz and g(z) = tan~' z, one finds that

/ — 1 = 1 = cos? g(x) = cos®(tan"' z
)= )~ secglay) % I = costltan ),

Let 6 = tan !z for simplicity and note that tan = . When = > 0, the angle # arises in a
right triangle with an opposite side of length x and an adjacent side of length 1. It follows

by Pythagoras’ theorem that the hypotenuse has length /1 + x2, so

1 2 1
"(2) = cos®(tan ') =cos? = [ —— | = ——.
J2) = cos’(tan~"z) ) -

When 2 < 0, the last equation holds with —x instead of z. This changes the term tan™!x

by a minus sign, but the cosine remains unchanged, so the equation is still valid.

(5. Compute the derivative f’(2) in the case that x2ef(®) 4 322/ = 2 for all x.

)

Let us write z2e¥ + 3ze?* = 2 for simplicity. Differentiating both sides, we get
2xeY + x2e¥y’ + 3e* + 3xe®¥ - 2y = 0.

We now collect the terms that contain 3’ on the left hand side and we get

2xeY + 3e%Y 2 + 3eY
x2e¥ + 6xe2y 12+ 6rev’

(z%e¥ + 6ze™)y = —2we? — 3 = Y =




To determine the value of y that corresponds to z = 2, we note that
22V +3ze? =2 = 4eV+6e¥ =2 = 3 +2¥-1=0.

Let z = e¥ for convenience. Then 322 + 2z — 1 = 0 and the quadratic formula gives

244 14-3  —24+4 1

-1
: 6 6 3’

Since z = €Y must be positive, the only acceptable solution is z = e¥ = 1/3 and so

, 2z + 3eY 20 +1 S

y= T2+ 6zey | 224228




MAU11201 — Calculus
Homework #35 solutions

(1. Show that f(z) = 223 — 32 — 4x + 1 has exactly one root in (0, 1). )

Being a polynomial, f is continuous on the interval [0, 1] and we also have
FO)=1, f(1)=2-3-4+1=—4.

Since f(0) and f(1) have opposite signs, f must have a root that lies in (0, 1). To show it is
unique, suppose that f has two roots in (0,1). Then f’ must have a root in this interval by
Rolle’s theorem. On the other hand, it is easy to check that

3++/33
r=—.
6

Since f’ has no roots in (0, 1), we conclude that f has exactly one root in (0, 1).

fl(r)=0 = 62°—6x—4=0

2. Compute each of the following limits.

3.1'2 —br—2 . (ln x)2 . 3x . 2/x
I o —mare T dm T Le= lim (e +sina)t

The first limit has the form 0/0, so one may use L’Hopital’s rule to find that

6x—5 12—5
T .

Ly = i —
T

The second limit has the form co/oo and one may apply L’Hopital’s rule to get
2(1 -1 21
Ly = lim 202w 2w
xr—00 Tr—00 X

This is still a limit of the form oco/oco and another application of L'Hépital’s rule gives

2 9
Ly = i 27— pim 2 0.
T—00 1 rT—0o0 U

The third limit involves a non-constant exponent which can be eliminated by writing

21 3z ;
In Ly =1In lim (¢* +sinz)*® = lim In(e* 4 sinz)*® = lim n(e™ +sin x)
—0+ z—0+ z—0t X

This gives a limit of the form 0/0, so one may use L'Hopital’s rule to find that

InLy = lim 2(e* +sinz) ! - (3e3* + cos ) _ 2(3+1) _
z—0t 1 1+0

Since In L3z = 8, the original limit Lj is then equal to Ly = e = €8,



3. On which intervals is f increasing? On which intervals is it concave up?

f(z) = In(42® + 1).

To say that f(x) is increasing is to say that f’(x) > 0. Let us then compute
8w
/ — . 4 2 1 !/ -
fz) 42 4+ 1 (da”+1) 422 + 1
Since the denominator is always positive, f(x) is increasing if and only if > 0. Next, we
look at concavity. To say that f(z) is concave up is to say that f”(z) > 0. In this case,

() 8(4x? +1) — 8z -8x  8(4z? +1—82%)  8(1+ 2x)(1 — 2x)

xT) = = =

(42?2 +1)? (42?2 +1)2 (42?2 +1)2

To determine the sign of this expression, one needs to find the sign of each of the factors.
According to the table below, f(x) is concave up if and only if x € (—1/2,1/2).

~1/2  1/2

8(1+ 2x) - + +
1-2z + + —
f"(x) - +

4. Find the intervals on which f is increasing/decreasing and the intervals on which f
is concave up/down. Use this information to sketch the graph of f.

T
f@)=ar
To say that f(x) is increasing is to say that f’(x) > 0. Let us then compute
22 +1-22 2 1 — a2
f'(x) = 2 2 (2 2"
(2 4+ 1) (24 1)

Since the denominator is always positive, f(z) is increasing if and only if
1-22>0 <+ 1°<1 <= -l<z<l

To say that f(x) is concave up is to say that f”(x) > 0. In this case, we have
—2z(2? +1)* = 2(2* + 1) - 22(1 — 2?)

fiz) = (x2+1)4
 2e(2®+1)—4dz(1—2®)  2x(2® +1+42—22%)
(22 +1)3 - (22 +1)3
23— 2x(x - V3)(z +/3)
(x2+1)3 (22 4 1)3 '

To determine the sign of this expression, one needs to find the sign of each of the factors.
According to the table below, f(z) is concave up if and only if 2 € (—/3,0) U (v/3, +00).



V3 0 V3
2 — — + +
R 2 3 4 r—V3| - — — +
r+V3| - + |+ +
[ (@) - + - +
T
Fi 1: Th h of =
igure e graph of f(x) ]

5. Show that the cubic polynomial f(z) = 2* + ax® + bx + ¢ has a unique real root for
any given constants a, b, ¢ such that a? < 3b.

Since f is a polynomial, it is certainly continuous and we also have

li = li 8= _ li = li 8= .
A ) = o= oo, L Sle) = p e = oo
In view of the intermediate value theorem, f must then attain all values, so it must have a
real root. Suppose that f has two roots z; < z3. Then f’ must have a root in (x1,x2) by

Rolle’s theorem. On the other hand, it is easy to check that
f'(z) = 32° + 2ax + b

is a quadratic whose discriminant A = (2a)? — 4 - 3b = 4(a® — 3b) is negative. Thus, f’ does
not have any real roots and this means that f has a unique real root.



MAU11201 — Calculus
Homework #°6 solutions

1. Find the global minimum and the global maximum values that are attained by

flz) =42 +2°> — 2z — 1, 0<z<1.

The derivative of the given function can be expressed in the form
fllz)=120* +22 —2=2(62> + 1 — 1) =23z — 1)(2z + 1).
Thus, the only points at which the minimum/maximum value may occur are the points
x =0, x =1, r=1/3, r=—1/2.
We exclude the rightmost point, as it does not lie in the given interval, and we compute
f(0) = —1, f)y=44+1-2-1=2, fA)3)==+-—--—-1=——.

This means that the minimum is f(1/3) = —38/27 and the maximum is f(1) = 2.

2. Find the linear approximation to the function f at the point xy in the case that

I

= =0.
/(@) 2 +3r+1’ o

To find the derivative of f(x) at the given point, we use the quotient rule to get

(1223 — 4)(2® + 3z + 1) — (22 + 3)(32* — 4z + 2)
(22 + 3z + 1)?

£1(0) = _10.

f/(l’) = 12

Since f(0) = 2, the linear approximation is thus L(z) = —10z + 2.

3. Show that f(z) = a® — 42% + 1 has exactly two roots in (—1,1) and use Newton’s
method with x;1 = 41 to approximate these roots within two decimal places.

To prove existence using Bolzano’s theorem, we note that f is continuous with
f(-)=—-1-4+4+1<0, f(0)=1>0, fl)y=1—-4+1<0.

In view of Bolzano’s theorem, f must then have a root in (—1,0) and another root in (0, 1),
so it has two roots in (—1,1). Suppose that it has three roots in (—1,1). Then f" must have
two roots in this interval by Rolle’s theorem. On the other hand,

f'(r) = 32* — 82 = 2(3x — 8)



has only one root in (—1,1). This implies that f can only have two roots in (—1,1).
To use Newton’s method to approximate the roots, we repeatedly apply the formula

f(x) 3 — 422 +1
Tpy1 = Tp — =T, — .
H f(xy) 3x2 — 8z,
Starting with the initial guess 1 = —1, one obtains the approximations

x9 = —0.6364, x3 = —0.4972, xy = —0.4735, x5 = —0.4728.
Starting with the initial guess x; = 1, one obtains the approximations
9 = 0.6, x3 = 0.5398, x4 = 0.5374, x5 = 0.5374.

This suggests that the two roots are roughly —0.47 and 0.53 within two decimal places.

4. A rectangle is inscribed in an equilateral triangle of side length a > 0 with one of its
sides along the base of the triangle. How large can the area of the rectangle be?

Let x,y be the two sides of the rectangle and assume that x lies along the base of the
triangle. Then one can relate the two sides z,y by noting that

° Yy 2y V3
an (a—x)/2 V3 a—x y 2 (a =)

We need to maximise the area A of the rectangle and this is given by
A(x>:$y:7$(a—x)=7(ax—x2), 0<z<a.

Since A'(z) = “/75(@ — 2x), the only points at which the maximum value may occur are the

points z = 0, v = a and = = §. Since A(0) = A(a) = 0, the maximum is A(§) = %g‘

5. A ladder 5m long is resting against a vertical wall. The bottom of the ladder slides
away from the wall at the rate of 0.2m/s. How fast is the angle 6 between the ladder
and the wall changing when the bottom of the ladder lies 3m away from the wall?

Let = be the horizontal distance between the base of the ladder and the wall, and let y
be the vertical distance between the top of the ladder and the floor. We must then have

vt +yt)P =5 = 2z(t)2'(t)+2y(t)y(t) = 0.
At the given moment, 2/(¢) = 0.2 = 1/5 and also x(t) = 3, so it easily follows that
w(t)r'(t) x(t)x'(t) 3/5 3

YO=""00 TR VPR



We now need to determine 6’. Using the chain rule along with the quotient rule, we get

T 'y —vy'x 'y —y'x
tanf = - — 86029-6’:% — 0’:y—2y-cos26.
) ) Yy

Since cos = y/5 and the other variables are already known, we may conclude that

g — 'y —y'x Ccos? ) — 4(1/5) — 3(=3/20) (4)2 _ 1

y? 42 5 20°




MAU11201 — Calculus
Homework #7 solutions

(1. Find the area of the region enclosed by the graphs of f(x) = 322 and g(z) = x + 2. )

The graph of the parabola f(z) = 322 meets the graph of the line g(x) = = + 2 when
3P =2+2 <= 3P-1-2=0 <= (Br+2)(z—1)=0.

Since the line lies above the parabola at the points —2/3 < x < 1, the area is then

2/3 —2/3

2. Compute the volume of a sphere of radius > 0. Hint: one may obtain such a sphere
by rotating the upper semicircle f(z) = v/r?2 — 22 around the z-axis.

The volume of the sphere is the integral of 7 f(z)? and this is given by

r 31T 273 23 473
/W(T2—x2)d?[f:ﬂ' P I [l I I L
3], 3 3 3

'

(3. Compute the length of the graph of f(z) = % + 527 over the interval [1,3]. )

The length of the graph is given by the integral of /1 + f/(x)?. In this case,

43 2 3 1 20 1
! = — — —— = — — — / 2 e p— -
PO =T~ 3 — T =%+t5

1
2

Taking the square root of both sides, we conclude that the length of the graph is

3 B3 1 2 171 49
VIt (22 de = i Ve |2 22
/1 + f(2)? dx /1 (4 +x3) v {16 2:[:2] 9

1



4. Find both the mass and the centre of mass for a thin rod whose density is given by

6(x) = 2% + 2z + 3, 1<z <2,

The mass of the rod is merely the integral of its density function, namely
2 3 225
M = / dx—/(x2+2x—|—3)d:c:{%4—:1:2—1—3:13] =3
1
The centre of mass is given by a similar formula and one finds that

2 4 3 2712
3 |z 2 3z 31
o(x — 2 3z)dx = —_—t— = —.
M/x l(x—l—x—l—x)a: 25{44—34—2}1 50

5. Use the definition of integrals and Riemann sums to compute the value of the limit

I A L —
nl_I)Iolo n2_|_12 n2_'_22 n2+n2 :

First of all, we note that the given sum can be expressed in the form

- n/n "1
ZRZ—F/CQ—Zl—I—/k/n ZEf(k/n)7

k=1

where f(z) = 7. It is thus a Riemann sum for the function f on [0,1]. If we divide this
interval into n equal parts and choose x; = k/n for each k, then we get

/f dx—nll_}mea:kAx—hmZ f(k/n).

Once we now combine the last two equations, we may finally conclude that

L - n 1 b ode 41 T
Jgﬂsogm—éi%;a'ﬂ’“/”)—/o T el = g




MAU11201 — Calculus
Homework #8 solutions

1. Compute each of the following indefinite integrals.

/cos\/fdx, /xQ-\/aH—ldx.

For the first integral, we let u = /x. This gives # = u? and dx = 2u du, so

/cosﬁd:c:/Qucosudu.

We now integrate by parts using dv = 2 cosu du. Since v = 2sinu, we find that
/cos Vo dr = 2usinu — /ZSinudu =2usinu + 2cosu + C
= 2y/x - sin/x + 2cos vz + C.

For the second integral, we let w =x + 1. Then du = dx and x = u — 1, so

/1,2-\/x—ﬂdxz/(u—1)2\/adu:/(u2—2u+1)\/adu

_ /(us/z — 232 4 W) du = %u7/2 _ §u5/2 + ;uza/z +C

2 4 2

2. Compute each of the following indefinite integrals.

/sin3 T - cos x dz, /tan4 z - sec® z dz.

For the first integral, we use the substitution v = cosx. Since du = —sinx dx, we get

/sin3x~0032xdx:/0082x'(1—c082x)-sinxda:: —/u2(1—u2)du

1 cos®xr  cosx

1
:/(u4—u2)du:—u5——u3+02 - + C.

) 3 ) 3

For the second integral, we use the substitution u = tanx. Since du = sec? x dx, we get

/tan4x -sec® xdr = /tan4$ (1 +tan’*z)? - sec’ x dr = /u4(1 +u?)? du

1 2 1
—/(u4—|—2u6+u8)du— 5u5+?u7+§u9+0
tan®z 2tan”’z  tan’x
— + + +C.

D 7 9



3. Compute each of the following indefinite integrals.

x? x2
/—dx, /—dm
VI —=z V9 — 22

For the first integral, we let u =9 — x. This gives * =9 — u and dx = —du, so

2 iy — (9—u)2d _ 18u—u2—81d
NCEr i vu T wre
2
= / (18u!/? — u¥? — 81u™Y?) du = 12u%? — guf’/2 — 162u'* + C

2
2(9 —2)? —162(9 — )2 4+ C.

=12(9 — )32 — -

For the second integral, let x = 3sin 6 for some angle —7/2 < 0 < /2. Then

z? 9sin” 0 . 9 9
/m /3(:03 BCOSGdH—/QSm 0d9—§/(1—cos(29))d6
9sin(26) 90 9sinfcost
-3 - ee=F e

Since sinf = /3 by above, we also have cos = /1 — 22/9 and this finally gives

T 9 z 9z 2
— - dr=-sn 'S -S4 /1-"—4C
/\/9—;1:2 S R N i N
zgsin % g\/ 9—a22+C.

4. Compute each of the following indefinite integrals.

2 1 2 x
/Lda:, / te dx.
2 — 31+ 2 3—e*

When it comes to the first integral, one may use partial fractions to write

20 +1  2w+1 A B

—3r+2 (v—1)(x—2) _x—1+x—2

for some constants A and B. Clearing denominators gives rise to the identity
2r+1=A(x—2)+ B(x — 1)
and this should be valid for all x. Let us then look at some special values of x to get

=12 = 3=-A  5=B8.



This gives A = —3 and B = 5, so it easily follows that

2v+1 3 5
—————dxr = - de =—-3In|r —1|+5In|z — 2|+ K.
/x2—3x—|—2 g /< x—1+x—2) v nfe —1]+5nfz —2]+

When it comes to the second integral, we let u = ¢®. This gives du = e* dxr and so

2+e” 2+e” 2+u
/B—exdw_/—ex(?)—ex)e d:v—/u(g_u)du.

Proceeding as before, we use partial fractions to obtain a decomposition of the form

24w A B
WG —u) u+3—u - +u (3 —u) + Bu

Taking u = 0 gives 2 = 3A and taking u = 3 gives 5 = 3B, so it easily follows that

[amins [ (e 55) o
2 ) 2z 5

:§ln]u\—§ln|3—u]+K:?—§ln|3—ex|+K.

5. Find the volume of the solid that is obtained by rotating the graph of f(z) = sinx
around the z-axis over the interval [0, 7].

The volume of the solid is the integral of 7 f(x)? and this is given by

™ T in(2 us 2
Volume = 7r/ sin®z dr = E/ (1 —cos(2z)) dv = e - sin(2z) _ T
0 2 Jo 2 2 0




MAU11201 — Calculus
Homework #9 solutions

1. Compute each of the following indefinite integrals.

x?— 2z —3 75 — a7
—d —dx.
/ Bz /x2—2a:—3 .

When it comes to the first integral, one may use partial fractions to write

©?—2r—3 a*—-2x—-3 Az+B C
-2 22(z—-1) 22 x—1

for some constants A, B and C. Clearing denominators gives rise to the identity
2? —2r — 3= (Az+ B)(x — 1) + C2”
and this should be valid for all x. Let us then look at some special values of x to get
r=0,1,2 = —-3=-B, —4=0C, —3=2A+DB+4C.
This gives B =3, C' = —4 and 2A = —3 — 3 4+ 16 = 10, so it easily follows that

x? — 2z —3 5 3 4
/ 3 — 22 dm_/(EjLﬁ_x—l)dx

3
=b5ln|z|———4lnjz - 1|+ K.
x

When it comes to the second integral, one may use division of polynomials to write

3 — 2? N 5r + 3 1+ 5r + 3
_ —_— = .
2?2 —2x —3 x?2 —2x —3 (x4 1)(x —3)

The rightmost rational function is now proper and it can be decomposed as

5t + 3 A . B
(z+D(x—3) x+1 x-3

Clearing denominators, we get 5z + 3 = A(x — 3) + B(x + 1) and this implies
r=-1,3 = 2= —4A, 18=4B = A=1/2, B =9)/2.
Once we now combine our computations above, we may finally conclude that
23— 1? 1/2 9/2
" dr= 1 d
/x2—2x—3 o /(:c—l— +x—|—1+x—3> o

IL‘2

1 9
=?+x—|—§ln]x+1]+§ln|x—3|+K.




2. Compute each of the following indefinite integrals.

/ii? /1n(x2+x)da7.

For the first integral, we let u =/ to simplify. Since x = u? and dz = 2u du, we get

2 2 4+2 2
/ +\/_ ﬂ-2udu:/ +Udu-/ du

x+\/— u?+u u+1 1

=2u+2Inju+ 1|+ C =2vz +2In(z + )+(J.

2x+1 dl’ <0

For the second integral, we let v = In(2? + z) and dv = dz. Then du =

2 1
/ln(x2+x)d:v:xln(:v2+x)—/:Ufigc

:xln(mQ—i—x)—/2$+1dx:xln(x2+x)—/(2— ! )dm

r+1 r+1
=xIn(2® +2) —2r +Injz + 1| + C.

-xdx

3. Use integration by parts and induction to show that

/2 2" . nl)?
/ sin?" ™ ¢ do = u for each integer n > 0.
0

(2n + 1)!
We integrate by parts with « = sin®" z and dv = sinz dz. Since v = — cos z, we get
/ sin?" ™z dr = —sin®" x cosx + / 2nsin®" !z - cos® x dx

= —sin*" zcosx + /Qn sin? 'z - (1 —sin®z) do
= —sin® zcosx + 2n / sin®" 'z dr — 2n / sin?" ™ x dx.

Next, we rearrange terms and we evaluate the integral over [0, 7/2] to find that

/2 s .2n /2 /2
/ | sin o dy = — | SEEE - / / sin® !z du.
0 2n+1 0 2n+1

Since sin 0 = 0 and cos(7/2) = 0, this leads to an identity of the form

w/2 ) /2 2
I, = / sin? g do = ——° / sin?" g dp = —— . I,_1.
0 2TL -+ 1 0 2n + ].




We now use this identity to establish the given formula. When n = 0, we have

/2 /2 20 N2
Ioz/ sinzdr = [—COS$] zlzu
0 0 1'

and the formula holds. If we assume that it holds for some n, then we also have

_2n+2 I 2n42 (2"-nl)?
"o +3 " 2 +3 (2n+1)!
2(n+1)2  (2"-al)? (27 (n+ 1))

2n+2)2n+3) (2n+1) (2n+3)!

In particular, the formula holds for n + 1 as well, so it holds for all n > 0 by induction.

4. Show that each of the following sequences converges.

[4n2 + 5 (=1)" 2
Ay, =\ ————, b, = , ¢, = ntan —.
On? +7 n?+1 n

Since the limit of a square root is the square root of the limit, it should be clear that

4n? +5 o 4n? 4 i 4 2
im =lim —=- = im a, =1/==—.
n—00 9712 —+ 7 n—o00 977,2 9 n—00 9 3
The limit of the second sequence is zero because _n+ﬂ <b, < n%ﬂ for each n > 1. This

means that b, lies between two sequences that converge to zero. Finally, one has

2 tan(2
lim ¢, = lim ntan — = lim M.
n—00 n—00 n n—00 1/n

This is a limit of the form 0/0, so one may use L.’Hopital’s rule to conclude that

2 2 . (2 /
lim ¢, = Tim S @I e (2/m) = 250c20 = 2.

n—00 n—o00 (1/n)’ n—00

5. Define a sequence {a,} by setting a; = 1 and a,+1 = 2v/4 + a, for each n > 1. Show
that 1 < a, < a,y1 < 8 for each n > 1, use this fact to conclude that the sequence
converges and then find its limit.

Since the first two terms are a; = 1 and ay = 2\/5, the statement

1§an§an+1§8



does hold when n = 1. Suppose that it holds for some n, in which case

5<d4a, <44 a,1 <12 = 2V/5<2VA+a, <24+ apq < 2V12

—  2V5 < apit < ango < 2V12
= 1< ap <app2 <8

In particular, the statement holds for n + 1 as well, so it actually holds for all n € N. This
shows that the given sequence is monotonic and bounded, hence also convergent; denote its
limit by L. Using the definition of the sequence, we then find that

py1 =2v4+a, =— lima,; = lim2v4+4+a, =— L=2V4+ L.
n—o0 n—o0

This gives the quadratic equation L? = 4(L + 4) which implies that L = 2 + 2v/5. Since the
terms of the sequence satisfy 1 < a,, < 8, however, the limit must be L = 2 + 2v/5.
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