
MA1125 – Calculus

Homework #1 solutions

1. Find the domain and the range of the function f which is defined by

f(x) =
3− 2x

5− 3x
.

The domain consists of all points x 6= 5/3. To find the range, we note that

y =
3− 2x

5− 3x
⇐⇒ 5y − 3xy = 3− 2x ⇐⇒ 2x− 3xy = 3− 5y

⇐⇒ x(2− 3y) = 3− 5y ⇐⇒ x =
3− 5y

2− 3y
.

The rightmost formula determines the value of x that satisfies y = f(x). Since the formula
makes sense for any number y 6= 2/3, the range consists of all numbers y 6= 2/3.

2. Find the domain and the range of the function f which is defined by

f(x) =

√
2x− 1

x
.

When it comes to the domain, we need to have x 6= 0 and 2x−1 ≥ 0. This gives x ≥ 1/2
and the domain is [1/2,+∞). Since x is non-negative, the same is true for y = f(x) and

y2 =
2x− 1

x2
⇐⇒ y2x2 = 2x− 1 ⇐⇒ y2x2 − 2x+ 1 = 0.

If it happens that y = 0, then x = 1/2. If it happens that y 6= 0, then the last equation is
quadratic in x and one may use the quadratic formula to conclude that

x =
2±

√

4− 4y2

2y2
=

1±
√

1− y2

y2
.

This leads to the restriction 1− y2 ≥ 0, which gives y2 ≤ 1 and thus −1 ≤ y ≤ 1. Since y is
also non-negative, however, the range of the given function is merely [0, 1].



3. Show that the function f : (0, 1) → (1,∞) is bijective in the case that

f(x) =
1 + x

1− x
.

To show that the given function is injective, we note that

1 + x1

1− x1

=
1 + x2

1− x2

=⇒ 1− x2 + x1 − x1x2 = 1− x1 + x2 − x1x2

=⇒ 2x1 = 2x2 =⇒ x1 = x2.

To show that the given function is surjective, we note that

y =
1 + x

1− x
⇐⇒ y − xy = 1 + x ⇐⇒ y − 1 = xy + x ⇐⇒ x =

y − 1

y + 1
.

The rightmost formula determines the value of x such that y = f(x) and we need to check
that 0 < x < 1 if and only if y > 1. When y > 1, we have y + 1 > y − 1 > 0, so 0 < x < 1.
When 0 < x < 1, we have 0 < 1− x < 1 + x and this gives y > 1, as needed.

4. Express the following polynomials as the product of linear factors.

f(x) = 3x3 − 2x2 − 7x− 2, g(x) = x3 + x2 − 7x

4
+

1

2
.

When it comes to f(x), the possible rational roots are ±1,±2,±1/3,±2/3. Checking
these possibilities, one finds that x = −1, x = 2 and x = −1/3 are all roots. According to
the factor theorem, each of x+ 1, x− 2 and x+ 1/3 is thus a factor and one has

f(x) = 3(x+ 1)(x− 2)(x+ 1/3) = (x+ 1)(x− 2)(3x+ 1).

When it comes to g(x), let us first clear denominators and write

4g(x) = 4x3 + 4x2 − 7x+ 2.

The only possible rational roots are ±1,±2,±1/2,±1/4. Checking these possibilities, one
finds that only x = −2 and x = 1/2 are roots. This gives two of the factors and then the
third can be found using division of polynomials. More precisely, one has

4g(x) = (x+ 2)(4x2 − 4x+ 1) = (x+ 2)(2x− 1)2 =⇒ g(x) =
1

4
(x+ 2)(2x− 1)2.

5. Determine all angles 0 ≤ θ ≤ 2π such that 2 sin2 θ + 9 sin θ = 5.

Letting x = sin θ for convenience, one finds that 2x2 + 9x− 5 = 0 and

x =
−9±

√
81 + 4 · 10
4

=
−9± 11

4
=⇒ x =

1

2
,−5.

Since x = sin θ must lie between −1 and 1, the only relevant solution is x = sin θ = 1

2
. In

view of the graph of the sine function, there should be two angles 0 ≤ θ ≤ 2π that satisfy
this condition. The first one is θ1 =

π
6
and the second one is θ2 = π − π

6
= 5π

6
.



MA1125 – Calculus

Homework #2 solutions

1. Determine the inverse function f−1 in each of the following cases.

f(x) = 3− log2(2x− 4), f(x) =
2 · 7x + 3

5 · 7x + 4
.

When it comes to the first case, one can easily check that

3− y = log2(2x− 4) ⇐⇒ 23−y = 2x− 4 ⇐⇒ 22−y = x− 2,

so the inverse function is defined by f−1(y) = 22−y + 2. When it comes to the second case,

y =
2 · 7x + 3

5 · 7x + 4
⇐⇒ 5y · 7x + 4y = 2 · 7x + 3 ⇐⇒ 7x(5y − 2) = 3− 4y

and this gives 7x = 3−4y
5y−2

, so the inverse function is defined by f−1(y) = log7
3−4y
5y−2

.

2. Simplify each of the following expressions.

cos
(

tan−1 x
)

, sin
(

cos−1 x
)

, log2
4x + 8x

2x + 4x
.

To simplify the first expression, let θ = tan−1 x and note that tan θ = x. When x ≥ 0,
the angle θ arises in a right triangle with an opposite side of length x and an adjacent side
of length 1. It follows by Pythagoras’ theorem that the hypotenuse has length

√
1 + x2, so

the definition of cosine gives

cos(tan−1 x) = cos θ =
adjacent side

hypotenuse
=

1√
1 + x2

.

When x ≤ 0, the last equation holds with −x instead of x. This changes the term tan−1 x
by a minus sign, but the cosine remains unchanged, so the equation is still valid.

To simplify the second expression, one may use a similar approach or simply note that

θ = cos−1 x =⇒ cos θ = x =⇒ sin2 θ = 1− cos2 θ = 1− x2.

Since θ = cos−1 x lies between 0 and π by definition, sin θ is non-negative and

sin2 θ = 1− x2 =⇒ sin θ =
√
1− x2.

As for the third expression, one may simplify the given fraction to conclude that

log2
4x + 8x

2x + 4x
= log2

4x(1 + 2x)

2x(1 + 2x)
= log2 2

x = x.



3. Use the ε-δ definition of limits to compute limx→2 f(x) in the case that

f(x) =

{

2x− 5 if x ≤ 2
5− 3x if x > 2

}

.

In this case, x is approaching 2 and f(x) is either 2x− 5 or 5− 3x. We thus expect the
limit to be L = −1. To prove this formally, we let ε > 0 and estimate the expression

|f(x) + 1| =
{

|2x− 4| if x ≤ 2
|6− 3x| if x > 2

}

=

{

2|x− 2| if x ≤ 2
3|x− 2| if x > 2

}

.

If we assume that 0 6= |x− 2| < δ, then we may use the last equation to get

|f(x) + 1| ≤ 3|x− 2| < 3δ.

Since our goal is to show that |f(x) + 1| < ε, an appropriate choice of δ is thus δ = ε/3.

4. Compute each of the following limits.

L = lim
x→1

x3 − 4x2 + 4x− 1

x− 1
, M = lim

x→1

3x3 − 7x2 + 5x− 1

(x− 1)2
.

When it comes to the first limit, division of polynomials gives

L = lim
x→1

(x− 1)(x2 − 3x+ 1)

x− 1
= lim

x→1
(x2 − 3x+ 1) = 1− 3 + 1 = −1.

When it comes to the second limit, division of polynomials gives

M = lim
x→1

(x2 − 2x+ 1)(3x− 1)

x2 − 2x+ 1
= lim

x→1
(3x− 1) = 3− 1 = 2.

5. Use the ε-δ definition of limits to compute limx→3 (5x
2 − 6x+ 3).

Let f(x) = 5x2 − 6x+ 3 for convenience. Then f(3) = 30 and one has

|f(x)− f(3)| = |5x2 − 6x− 27| = |x− 3| · |5x+ 9|.
The factor |x− 3| is related to our usual assumption that 0 6= |x− 3| < δ. To estimate the
remaining factor |5x+ 9|, we assume that δ ≤ 1 for simplicity and we note that

|x− 3| < δ ≤ 1 =⇒ −1 < x− 3 < 1

=⇒ 2 < x < 4 =⇒ 19 < 5x+ 9 < 29.

Combining the estimates |x− 3| < δ and |5x+ 9| < 29, one may then conclude that

|f(x)− f(3)| = |x− 3| · |5x+ 9| < 29δ ≤ ε,

as long as δ ≤ ε/29 and δ ≤ 1. An appropriate choice of δ is thus δ = min(ε/29, 1).



MA1125 – Calculus

Homework #3 solutions

1. Show that there exists a real number 0 < x < π that satisfies the equation

x2 =
x2 + 1

2 + sin x
+ 4.

Consider the function f which is defined as the difference of the two sides, namely

f(x) =
x2 + 1

2 + sin x
+ 4− x2.

Being a composition of continuous functions, f is then continuous and we also have

f(0) =
1

2
+ 4 > 0, f(π) =

π2 + 1

2
+ 4− π2 =

9− π2

2
< 0.

In view of Bolzano’s theorem, this already implies that f has a root 0 < x < π.

2. For which values of a, b is the function f continuous at the point x = 2? Explain.

f(x) =







2x3 − ax2 + bx if x < 2
a2 + b if x = 2

2x2 + bx− a if x > 2







.

Since f is a polynomial on the intervals (−∞, 2) and (2,+∞), it should be clear that

lim
x→2−

f(x) = lim
x→2−

(2x3 − ax2 + bx) = 16− 4a+ 2b,

lim
x→2+

f(x) = lim
x→2+

(2x2 + bx− a) = 8 + 2b− a.

In particular, the function f is continuous at the given point if and only if

16− 4a+ 2b = 8 + 2b− a = a2 + b.

Solving this system of equations, one obtains a unique solution which is given by

16− 4a = 8− a =⇒ 3a = 8 =⇒ a =
8

3
=⇒ b = a2 + a− 8 =

16

9
.

In other words, f is continuous at the given point if and only if a = 8/3 and b = 16/9.



3. Show that f(x) = x5 − x2 − 3x+ 1 has three roots in the interval (−2, 2). Hint: you
need only consider the values that are attained by f at the points ±2, ±1 and 0.

Being a polynomial, the given function is continuous and one can easily check that

f(−2) = −29, f(−1) = 2, f(0) = 1, f(1) = −2, f(2) = 23.

Since the values f(−2) and f(−1) have opposite signs, f has a root that lies in (−2,−1).
The same argument yields a second root in (0, 1) and also a third root in (1, 2).

4. Compute each of the following limits.

L = lim
x→+∞

3x3 − 2x+ 4

5x3 − x2 + 7
, M = lim

x→2−

x3 + 5x2 − 4

3x3 − 16x+ 8
.

Since the first limit involves infinite values of x, it should be clear that

L = lim
x→+∞

3x3 − 2x+ 4

5x3 − x2 + 7
= lim

x→+∞

3x3

5x3
=

3

5
.

For the second limit, the denominator becomes zero when x = 2, while the numerator is
nonzero at that point. Thus, one needs to factor the denominator and this gives

M = lim
x→2−

x3 + 5x2 − 4

(x− 2)(3x2 + 6x− 4)
= lim

x→2−

24

20(x− 2)
= −∞.

5. Use the definition of the derivative to compute f ′(x0) in each of the following cases.

f(x) = x3, f(x) = 1/x2, f(x) = (3x+ 4)2.

The derivative of the first function is given by the limit

f ′(x0) = lim
x→x0

x3 − x3
0

x− x0

= lim
x→x0

(x− x0)(x
2 + xx0 + x2

0)

x− x0

= x2

0 + x2

0 + x2

0 = 3x2

0.

To compute the derivative of the second function, we begin by writing

f(x)− f(x0) =
1

x2
− 1

x2
0

=
(x0 − x)(x0 + x)

x2x2
0

.

Once we now divide this expression by x− x0, we may also conclude that

f ′(x0) = lim
x→x0

−(x0 + x)

x2x2
0

= −2x0

x4
0

= − 2

x3
0

.

Finally, the derivative of the third function is given by the limit

f ′(x0) = lim
x→x0

(3x+ 4)2 − (3x0 + 4)2

x− x0

= lim
x→x0

(3x+ 3x0 + 8)(3x− 3x0)

x− x0

= 6(3x0 + 4).



MA1125 – Calculus

Homework #4 solutions

1. Compute the derivative y′ = dy
dx

in each of the following cases.

y = tan(ex) + esecx, y = cos(sin2(ln x)).

When it comes to the first function, one may use the chain rule to get

y′ = sec2(ex) · (ex)′ + esecx · (secx)′ = ex sec2(ex) + esecx sec x tan x.

When it comes to the second function, one similarly finds that

y′ = − sin(sin2(ln x)) · [sin2(ln x)]′

= − sin(sin2(ln x)) · 2 sin(ln x) · [sin(ln x)]′
= − sin(sin2(ln x)) · 2 sin(ln x) · cos(ln x) · 1/x.

2. Compute the derivative y′ = dy
dx

in the case that y2 sin x+ x2 sin y = x2y.

Differentiating both sides of the given equation, one finds that

2yy′ sin x+ y2 cos x+ 2x sin y + x2y′ cos y = 2xy + x2y′.

We now collect the terms that contain y′ on the left hand side and we get

(2y sin x+ x2 cos y − x2)y′ = 2xy − y2 cos x− 2x sin y.

Solving this equation for y′, one may thus conclude that

y′ =
2xy − y2 cos x− 2x sin y

2y sin x+ x2 cos y − x2
.

3. Compute the derivative y′ = dy
dx

in each of the following cases.

y = esinx · cos(ex), y = (x · tan x)lnx.

When it comes to the first function, we use the product rule and the chain rule to get

y′ = esinx cos x · cos(ex)− esinx · ex sin(ex).
When it comes to the second function, logarithmic differentiation gives

ln y = ln x · ln(x tan x) =⇒ y′

y
=

1

x
· ln(x tan x) + ln x

x tan x
· (x tan x)′

=⇒ y′

y
=

ln(x tan x)

x
+

ln x

x tan x
· (tan x+ x sec2 x)

=⇒ y′ = (x · tan x)lnx ·
(

ln(x tan x)

x
+

ln x

x
+

ln x

sin x cos x

)

.



4. Compute the derivative f ′(x0) in the case that

f(x) =
(x2 + 3)2 · xlnx · e4−4x

√
e2x−2 + 3

, x0 = 1.

First, we use logarithmic differentiation to determine f ′(x). In this case, we have

ln f(x) = ln(x2 + 3)2 + ln xlnx + ln e4−4x − ln(e2x−2 + 3)1/2

= 2 ln(x2 + 3) + (ln x)2 + 4− 4x− 1

2
ln(e2x−2 + 3).

Differentiating both sides of this equation, one easily finds that

f ′(x)

f(x)
=

2 · 2x
x2 + 3

+
2 ln x

x
− 4− 2e2x−2

2(e2x−2 + 3)
.

To compute the derivative f ′(1), one may then substitute x = 1 to conclude that

f ′(1)

f(1)
=

4

4
+ 2 ln 1− 4− 2

8
= −13

4
=⇒ f ′(1) = −13

4
· 8 = −26.

5. Compute the derivative y′ = dy
dx

in the case that

y = tan−1 u, u =
√
2z3 + 1, z =

x2 − 3

x2 + 1
.

Differentiating the given equations, one easily finds that

dy

du
=

1

u2 + 1
,

du

dz
=

6z2

2
√
2z3 + 1

,
dz

dx
=

2x(x2 + 1)− 2x(x2 − 3)

(x2 + 1)2
=

8x

(x2 + 1)2
.

According to the chain rule, the derivative dy
dx

is the product of these factors, namely

dy

dx
=

dy

du

du

dz

dz

dx
=

1

u2 + 1
· 3z2√

2z3 + 1
· 8x

(x2 + 1)2
.



MA1125 – Calculus

Homework #5 solutions

1. Show that the polynomial f(x) = x3 − 4x2 − 3x+ 1 has exactly one root in (0, 2).

Being a polynomial, f is continuous on the interval [0, 2] and we also have

f(0) = 1, f(2) = 8− 16− 6 + 1 = −13.

Since f(0) and f(2) have opposite signs, f must have a root that lies in (0, 2). To show it is
unique, suppose that f has two roots in (0, 2). Then f ′ must have a root in this interval by
Rolle’s theorem. On the other hand, it is easy to check that

f ′(x) = 3x2 − 8x− 3 = (3x+ 1)(x− 3).

Since f ′ has no roots in (0, 2), we conclude that f has exactly one root in (0, 2).

2. Suppose that 0 < a < b. Use the mean value theorem to show that

1− a

b
< ln b− ln a <

b

a
− 1.

Since f(x) = ln x is differentiable with f ′(x) = 1/x, the mean value theorem gives

ln b− ln a

b− a
= f ′(c) =

1

c

for some point a < c < b. Using this fact to estimate the right hand side, one finds that

1

b
<

1

c
<

1

a
=⇒ 1

b
<

ln b− ln a

b− a
<

1

a
=⇒ 1− a

b
< ln b− ln a <

b

a
− 1.

3. Compute each of the following limits.

L1 = lim
x→3

2x3 − 8x2 + 7x− 3

3x3 − 8x2 − x− 6
, L2 = lim

x→∞

x2

ex
, L3 = lim

x→0
(ex + x)1/x.

The first limit has the form 0/0, so one may use L’Hôpital’s rule to find that

L1 = lim
x→3

6x2 − 16x+ 7

9x2 − 16x− 1
=

54− 48 + 7

81− 48− 1
=

13

32
.

The second limit has the form ∞/∞ and one may apply L’Hôpital’s rule twice to get

L2 = lim
x→∞

2x

ex
= lim

x→∞

2

ex
= 0.



The third limit involves a non-constant exponent which can be eliminated by writing

lnL3 = ln lim
x→0

(ex + x)1/x = lim
x→0

ln(ex + x)1/x = lim
x→0

ln(ex + x)

x
.

This gives a limit of the form 0/0, so one may use L’Hôpital’s rule to find that

lnL3 = lim
x→0

ex + 1

ex + x
=

1 + 1

1 + 0
= 2.

Since lnL3 = 2, the original limit L3 is then equal to L3 = elnL3 = e2.

4. On which intervals is f increasing? On which intervals is it concave up?

f(x) =
x

x2 + 3
.

To say that f(x) is increasing is to say that f ′(x) > 0. Let us then compute

f ′(x) =
x2 + 3− 2x · x

(x2 + 3)2
=

3− x2

(x2 + 3)2
.

Since the denominator is always positive, f(x) is increasing if and only if

3− x2 > 0 ⇐⇒ x2 < 3 ⇐⇒ −
√
3 < x <

√
3.

To say that f(x) is concave up is to say that f ′′(x) > 0. In this case, we have

f ′′(x) =
−2x(x2 + 3)2 − 2(x2 + 3) · 2x · (3− x2)

(x2 + 3)4

=
−2x(x2 + 3)− 4x(3− x2)

(x2 + 3)3

= −2x(x2 + 3 + 6− 2x2)

(x2 + 3)3
= −2x(3− x)(3 + x)

(x2 + 3)3
.

To determine the sign of this expression, one needs to find the sign of each of the factors.
According to the table below, f(x) is concave up if and only if x ∈ (−3, 0) ∪ (3,+∞).

−3 0 3
−2x + + − −
3− x + + + −
3 + x − + + +
f ′′(x) − + − +



5. Find the intervals on which f is increasing/decreasing and the intervals on which f
is concave up/down. Use this information to sketch the graph of f .

f(x) =
(x− 1)2

x2 + 1
.

To say that f(x) is increasing is to say that f ′(x) > 0. Let us then compute

f ′(x) =
2(x− 1)(x2 + 1)− 2x · (x− 1)2

(x2 + 1)2
=

2(x− 1)(x+ 1)

(x2 + 1)2
=

2(x2 − 1)

(x2 + 1)2
.

Since the denominator is always positive, f(x) is increasing if and only if

x2 − 1 > 0 ⇐⇒ x2 > 1 ⇐⇒ x ∈ (−∞,−1) ∪ (1,+∞).

To say that f(x) is concave up is to say that f ′′(x) > 0. In this case, we have

f ′′(x) =
4x · (x2 + 1)2 − 2(x2 + 1) · 2x · 2(x2 − 1)

(x2 + 1)4

=
4x(x2 + 1)− 8x(x2 − 1)

(x2 + 1)3
=

4x(3− x2)

(x2 + 1)3
.

To determine the sign of this expression, one needs to find the sign of each of the factors.
According to the table below, f(x) is concave up if and only if x ∈ (−∞,−

√
3) ∪ (0,

√
3).

-4 -2 2 4

1

2

−
√
3 0

√
3

4x − − + +
3− x2 − + + −
f ′′(x) + − + −

Figure 1: The graph of f(x) =
(x− 1)2

x2 + 1
.



MA1125 – Calculus

Homework #6 solutions

1. Find the global minimum and the global maximum values that are attained by

f(x) = x3 − 6x2 + 9x− 5, 0 ≤ x ≤ 2.

The derivative of the given function can be expressed in the form

f ′(x) = 3x2 − 12x+ 9 = 3(x2 − 4x+ 3) = 3(x− 1)(x− 3).

Thus, the only points at which the minimum/maximum value may occur are the points

x = 0, x = 2, x = 1, x = 3.

We exclude the rightmost point, as it does not lie in the given interval, and we compute

f(0) = −5, f(2) = 8− 24 + 18− 5 = −3, f(1) = 1− 6 + 9− 5 = −1.

This means that the minimum value is f(0) = −5 and the maximum value is f(1) = −1.

2. If a right triangle has a hypotenuse of length a > 0, how large can its area be?

Let us denote by x, y the other sides of the triangle. Then x2 + y2 = a2 and the area is

A(x) =
1

2
xy =

1

2
x
√
a2 − x2, 0 ≤ x ≤ a.

The value of x that maximises this expression is the value of x that maximises its square

f(x) = A(x)2 =
1

4
x2(a2 − x2) =

1

4
(a2x2 − x4).

Let us then worry about f(x), instead. The derivative of this function is given by

f ′(x) =
1

4
(2a2x− 4x3) =

x

2
(a2 − 2x2).

Thus, the only points at which the maximum value may occur are the points

x = 0, x = a, x =
a√
2
.

Since f(0) = f(a) = 0, the maximum value is f(a/
√
2) and the largest possible area is

A(a/
√
2) =

a

2
√
2
·
√

a2 − a2

2
=

a

2
√
2
· a√

2
=

a2

4
.



3. A balloon is rising vertically at the rate of 1 m/sec. When it reaches 48m above the
ground, a bicycle passes under it moving at 3 m/sec along a flat, straight road. How
fast is the distance between the bicycle and the balloon increasing 16 seconds later?

Let x be the horizontal distance between the balloon and the bicycle, and let y be the
height of the balloon. Then x, y are the sides of a right triangle whose hypotenuse is the
distance z between the balloon and the bicycle. It follows by Pythagoras’ theorem that

x(t)2 + y(t)2 = z(t)2 =⇒ 2x(t)x′(t) + 2y(t)y′(t) = 2z(t)z′(t).

At the given moment, x′(t) = 3 and y′(t) = 1, while x(t) = 16 · 3 and y(t) = 48 + 16, so

z′(t) =
x(t)x′(t) + y(t)y′(t)
√

x(t)2 + y(t)2
=

48 · 3 + 64√
482 + 642

=
208

80
=

13

5
.

4. Find the linear approximation to the function f at the point x0 in the case that

f(x) =
x3 − 2x+ 4

x2 + 2
, x0 = 0.

To find the derivative of f(x) at the given point, we use the quotient rule to get

f ′(x) =
(3x2 − 2) · (x2 + 2)− 2x · (x3 − 2x+ 4)

(x2 + 2)2
=⇒ f ′(0) = − 4

22
= −1.

Since f(0) = 4/2 = 2, the linear approximation is thus L(x) = −(x− 0) + 2 = 2− x.

5. Show that f(x) = x3 − 4x+ 1 has two roots in (0, 2) and use Newton’s method with
initial guesses x1 = 0, 2 to approximate these roots within two decimal places.

To prove existence using Bolzano’s theorem, we note that f is continuous with

f(0) = 1, f(1) = 1− 4 + 1 = −2, f(2) = 8− 8 + 1 = 1.

In view of Bolzano’s theorem, f must then have a root in (0, 1) and another root in (1, 2),
so it has two roots in (0, 2). Suppose that it has three roots in (0, 2). Then f ′ must have
two roots in this interval by Rolle’s theorem. On the other hand, f ′(x) = 3x2 − 4 has only
one root in (0, 2). This implies that f can only have two roots in (0, 2).

To use Newton’s method to approximate the roots, we repeatedly apply the formula

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x3
n − 4xn + 1

3x2
n − 4

.

Starting with the initial guess x1 = 0, one obtains the approximations

x1 = 0, x2 = 0.25, x3 = 0.2540983607, x4 = 0.2541016884.

Starting with the initial guess x1 = 2, one obtains the approximations

x1 = 2, x2 = 1.875, x3 = 1.860978520, x4 = 1.860805879.

This suggests that the two roots are roughly 0.25 and 1.86 within two decimal places.



MA1125 – Calculus

Homework #7 solutions

1. Find the area of the region enclosed by the graphs of f(x) = 2x2 and g(x) = x+ 6.

The graph of the parabola f(x) = 2x2 meets the graph of the line g(x) = x+ 6 when

2x2 = x+ 6 ⇐⇒ 2x2 − x− 6 = 0 ⇐⇒ (2x+ 3)(x− 2) = 0.

Since the line lies above the parabola at the points −3/2 ≤ x ≤ 2, the area is then

∫

2

−3/2

[g(x)− f(x)] dx =

∫

2

−3/2

[

x+ 6− 2x2
]

dx =

[

x2

2
+ 6x− 2x3

3

]2

−3/2

=
343

24
.

2. Compute the volume of a sphere of radius r > 0. Hint: one may obtain such a sphere
by rotating the upper semicircle f(x) =

√
r2 − x2 around the x-axis.

The volume of the sphere is the integral of πf(x)2 and this is given by

∫ r

−r

π(r2 − x2) dx = π

[

r2x− x3

3

]r

−r

= π

(

2r3

3
+

2r3

3

)

=
4πr3

3
.

3. Compute the length of the graph of f(x) = 1

3
x3/2 over the interval [0, 5].

The length of the graph is given by the integral of
√

1 + f ′(x)2 and one has

f ′(x) =
1

3
· 3
2
· x1/2 =

√
x

2
=⇒ 1 + f ′(x)2 = 1 +

x

4
=

x+ 4

4
.

Taking the square root of both sides, we conclude that the length of the graph is

∫

5

0

√

1 + f ′(x)2 dx =

∫

5

0

(x+ 4)1/2

2
dx =

[

(x+ 4)3/2

3

]5

0

=
33 − 23

3
=

19

3
.



4. Find both the mass and the centre of mass for a thin rod whose density is given by

δ(x) = x3 + 2x2 + 5x, 0 ≤ x ≤ 2.

The mass of the rod is merely the integral of its density function, namely

M =

∫

2

0

δ(x) dx =

∫

2

0

(x3 + 2x2 + 5x) dx =

[

x4

4
+

2x3

3
+

5x2

2

]2

0

=
58

3
.

The centre of mass is given by a similar formula and one finds that

x =
1

M

∫

2

0

xδ(x) dx =
3

58

∫

2

0

(x4 + 2x3 + 5x2) dx =
3

58

[

x5

5
+

x4

2
+

5x3

3

]2

0

=
208

145
.

5. A cylindrical tank of radius 2m and height 3m is full with water of density 1000kg/m3.
How much work is needed to pump out the water through a hole in the top?

Consider a cross section of the tank which has arbitrarily small height dx and lies x
metres from the top. The volume of this cylindrical cross section is

V = π · radius2 · height = 4π dx.

Its mass is volume times density, namely m = 4000π dx, and the force needed to pump out
this part is mass times acceleration, namely mg. The overall amount of work is thus

Work =

∫

mg · x =

∫

3

0

4,000πg · x dx = 4,000πg

[

x2

2

]3

0

= 18,000πg.



MA1125 – Calculus

Homework #8 solutions

1. Compute each of the following indefinite integrals.

∫

sin
√
x√

x
dx,

∫

x
√
1− x dx.

For the first integral, we let u =
√
x. This gives x = u2 and dx = 2u du, so

∫

sin
√
x√

x
dx =

∫

sin u

u
· 2u du =

∫

2 sin u du = −2 cos u+ C = −2 cos
√
x+ C.

For the second integral, we let u = 1− x. This gives x = 1− u and dx = −du, so

∫

x
√
1− x dx = −

∫

(1− u)
√
u du =

∫

(u3/2 − u1/2) du

=
2

5
u5/2 − 2

3
u3/2 + C =

2

5
(1− x)5/2 − 2

3
(1− x)3/2 + C.

2. Compute each of the following indefinite integrals.

∫

sin3 x · cos4 x dx,
∫

tan2 x · sec6 x dx.

For the first integral, we use the substitution u = cosx. Since du = − sin x dx, we get

∫

sin3 x · cos4 x dx =

∫

sin2 x · cos4 x · sin x dx = −
∫

(1− u2) · u4 du

=

∫

(u6 − u4) du =
1

7
u7 − 1

5
u5 + C =

cos7 x

7
− cos5 x

5
+ C.

For the second integral, we use the substitution u = tan x. Since du = sec2 x dx, we get

∫

tan2 x · sec6 x dx =

∫

tan2 x · sec4 x · sec2 x dx =

∫

u2(1 + u2)2 du

=

∫

(u2 + u6 + 2u4) du =
1

3
u3 +

1

7
u7 +

2

5
u5 + C

=
tan3 x

3
+

tan7 x

7
+

2 tan5 x

5
+ C.



3. Compute each of the following indefinite integrals.

∫

x3(ln x)2 dx,

∫

x3
√
4− x2 dx.

For the first integral, let u = (ln x)2 and dv = x3 dx. Then du = 2 lnx
x

dx and v = x4

4
, so

∫

x3(ln x)2 dx =
x4

4
(ln x)2 −

∫

2 ln x

x
· x

4

4
dx =

x4

4
(ln x)2 − 1

2

∫

x3(ln x) dx.

Next, we take u = ln x and dv = x3 dx. Since du = 1

x
dx and v = x4

4
, we conclude that

∫

x3(ln x)2 dx =
x4

4
(ln x)2 − x4

8
ln x+

∫

x3

8
dx =

x4

4
(ln x)2 − x4

8
ln x+

x4

32
+ C.

For the second integral, let x = 2 sin θ for some angle −π/2 ≤ θ ≤ π/2. Then
∫

x3
√
4− x2 dx =

∫

8 sin3 θ ·
√

4− 4 sin2 θ · 2 cos θ dθ = 32

∫

sin3 θ · cos2 θ dθ.

This can be further simplified by letting u = cos θ, in which case du = − sin θ dθ and
∫

x3
√
4− x2 dx = −32

∫

(1− u2) · u2 du = 32

∫

(u4 − u2) du

= 32

(

1

5
u5 − 1

3
u3

)

= 32

(

cos5 θ

5
− cos3 θ

3

)

+ C.

Since 4 cos2 θ = 4− 4 sin2 θ = 4− x2, we also have cos θ = 1

2
(4− x2)1/2 and so

∫

x3
√
4− x2 dx =

(4− x2)5/2

5
− 4(4− x2)3/2

3
+ C.

4. Find the area of the region enclosed by the graphs of f(x) = e2x and g(x) = 3ex − 2.

Letting z = ex for simplicity, we get f(x) = z2 and g(x) = 3z − 2. It easily follows that

f(x) ≤ g(x) ⇐⇒ z2 ≤ 3z − 2 ⇐⇒ (z − 2)(z − 1) ≤ 0 ⇐⇒ 1 ≤ z ≤ 2.

In other words, f(x) ≤ g(x) if and only if 0 ≤ x ≤ ln 2, so the area of the region is

Area =

∫

ln 2

0

[g(x)− f(x)] dx =

∫

ln 2

0

(3ex − 2− e2x) dx

=

[

3ex − 2x− 1

2
e2x

]ln 2

0

=
3

2
− 2 ln 2.



5. Find the volume of the solid that is obtained by rotating the graph of f(x) = xex

around the x-axis over the interval [0, 1].

The volume of the solid is the integral of πf(x)2 and this is given by

Volume = π

∫

1

0

x2e2x dx.

To simplify this expression, let u = x2 and dv = e2x dx. Then du = 2x dx and v = 1

2
e2x, so

∫

1

0

x2e2x dx =

[

x2

2
e2x

]1

0

−
∫

1

0

xe2x dx.

Once again, we take u = x and dv = e2x dx. Then du = dx and v = 1

2
e2x, so

∫

1

0

x2e2x dx =

[

x2

2
e2x − x

2
e2x

]1

0

+
1

2

∫

1

0

e2x dx

=

[

x2

2
e2x − x

2
e2x +

1

4
e2x

]1

0

.

The volume of the solid is given by π times the last integral, so it is given by

Volume = π

[

x2

2
e2x − x

2
e2x +

1

4
e2x

]1

0

=
π(e2 − 1)

4
.



MA1125 – Calculus

Homework #9 solutions

1. Compute each of the following indefinite integrals.

∫

x3 − 3x+ 2

x+ 3
dx,

∫

x+ 3

x3 − 3x+ 2
dx.

When it comes to the first integral, one may use division of polynomials to find that

∫

x3 − 3x+ 2

x+ 3
dx =

∫
(

x2 − 3x+ 6− 16

x+ 3

)

dx

=
x3

3
− 3x2

2
+ 6x− 16 ln |x+ 3|+ C.

When it comes to the second integral, one may use partial fractions to write

x+ 3

x3 − 3x+ 2
=

x+ 3

(x− 1)2(x+ 2)
=

A

x− 1
+

B

(x− 1)2
+

C

x+ 2

for some constants A, B and C. Clearing denominators gives rise to the identity

x+ 3 = A(x− 1)(x+ 2) + B(x+ 2) + C(x− 1)2

and this should be valid for all x. Let us then look at some special values of x to get

x = −2, 1, 0 =⇒ 1 = 9C, 4 = 3B, 3 = −2A+ 2B + C.

This gives C = 1/9, B = 4/3 and 2A = 2B + C − 3 = 8/3 + 1/9− 3 = −2/9, so

∫

x+ 3

x3 − 3x+ 2
dx =

∫
(

− 1/9

x− 1
+

4/3

(x− 1)2
+

1/9

x+ 2

)

dx

= −1

9
ln |x− 1| − 4

3
(x− 1)−1 +

1

9
ln |x+ 2|+ C.

2. Compute each of the following indefinite integrals.

∫

x+ 3

x+
√
x
dx,

∫

ex + 3

ex + 1
dx.

In the first case, we let u =
√
x to simplify. Since x = u2, we have dx = 2u du and

∫

x+ 3

x+
√
x
dx =

∫

u2 + 3

u2 + u
· 2u du = 2

∫

u2 + 3

u+ 1
du.



This is a rational function that can be simplified using division of polynomials, so

∫

x+ 3

x+
√
x
dx = 2

∫

u2 − 1 + 4

u+ 1
du = 2

∫
(

u− 1 +
4

u+ 1

)

du

= u2 − 2u+ 8 ln |u+ 1|+ C = x− 2
√
x+ 8 ln(

√
x+ 1) + C.

For the second integral, we proceed similarly with u = ex. Since du = ex dx, we find that

∫

ex + 3

ex + 1
dx =

∫

ex + 3

ex(ex + 1)
· ex dx =

∫

u+ 3

u(u+ 1)
du.

In this case, however, one needs to use partial fractions to write

u+ 3

u(u+ 1)
=

A

u
+

B

u+ 1

for some constants A,B that need to be determined. Clearing denominators gives

u+ 3 = A(u+ 1) +Bu,

so one may take u = −1, 0 to find that 2 = −B and 3 = A. It easily follows that

∫

ex + 3

ex + 1
dx =

∫
(

3

u
− 2

u+ 1

)

du = 3 ln |u| − 2 ln |u+ 1|+ C

= 3x− 2 ln(ex + 1) + C.

3. Compute each of the following indefinite integrals.

∫

sin3 x

cos8 x
dx,

∫

3x+ 1

x2 + 2x+ 5
dx.

For the first integral, it is better to simplify the given expression and write

∫

sin3 x

cos8 x
dx =

∫

tan3 x

cos5 x
dx =

∫

sec5 x · tan3 x dx.

To compute this integral, we let u = secx. Then du = secx tan x dx and we get

∫

sin3 x

cos8 x
dx =

∫

sec4 x · tan2 x · sec x tan x dx =

∫

u4(u2 − 1) du

=

∫

(u6 − u4) du =
1

7
u7 − 1

5
u5 + C =

sec7 x

7
− sec5 x

5
+ C.



For the second integral, the substitution u = x2 + 2x+ 5 gives du = 2(x+ 1) dx and this is
helpful whenever the numerator is a multiple of x+ 1. Let us then split the integral as

∫

3x+ 1

x2 + 2x+ 5
dx =

∫

3(x+ 1)− 2

x2 + 2x+ 5
dx

= 3

∫

x+ 1

x2 + 2x+ 5
dx− 2

∫

dx

x2 + 2x+ 5
.

For the first part, one may use the substitution u = x2 + 2x+ 5 to find that

3

∫

x+ 1

x2 + 2x+ 5
dx =

3

2

∫

du

u
=

3

2
ln |u|+ C =

3

2
ln |x2 + 2x+ 5|+ C.

For the second part, one may complete the square and let u = (x+ 1)/2. This gives

2

∫

dx

x2 + 2x+ 5
= 2

∫

dx

(x+ 1)2 + 4
= 4

∫

du

4u2 + 4

= tan−1 u+ C = tan−1
x+ 1

2
+ C.

As for the original integral, this is merely the difference of the two parts, namely
∫

3x+ 1

x2 + 2x+ 5
dx =

3

2
ln |x2 + 2x+ 5| − tan−1

x+ 1

2
+ C.

4. Show that each of the following sequences converges.

an = cos
n2 + 2

n3 + 1
, bn =

(−1)n

n2
, cn = n sin

1

n
.

Since the limit of a cosine is the cosine of the limit, it should be clear that

lim
n→∞

n2 + 2

n3 + 1
= lim

n→∞

n2

n3
= lim

n→∞

1

n
= 0 =⇒ lim

n→∞

an = cos 0 = 1.

The limit of the second sequence is zero because −1/n2 ≤ bn ≤ 1/n2 for each n ≥ 1. This
means that bn lies between two sequences that converge to zero. Finally, one has

lim
n→∞

cn = lim
n→∞

n sin
1

n
= lim

n→∞

sin(1/n)

1/n
.

This is a limit of the form 0/0, so one may use L’Hôpital’s rule to conclude that

lim
n→∞

cn = lim
n→∞

cos(1/n) · (1/n)′
(1/n)′

= lim
n→∞

cos(1/n) = cos 0 = 1.



5. Define a sequence {an} by setting a1 = 1 and an+1 =
√
2an + 1 for each n ≥ 1. Show

that 1 ≤ an ≤ an+1 ≤ 3 for each n ≥ 1, use this fact to conclude that the sequence
converges and then find its limit.

Since the first two terms are a1 = 1 and a2 =
√
3, the statement

1 ≤ an ≤ an+1 ≤ 3

does hold when n = 1. Suppose that it holds for some n, in which case

2 ≤ 2an ≤ 2an+1 ≤ 6 =⇒ 3 ≤ 2an + 1 ≤ 2an+1 + 1 ≤ 7

=⇒
√
3 ≤ an+1 ≤ an+2 ≤

√
7

=⇒ 1 ≤ an+1 ≤ an+2 ≤ 3.

In particular, the statement holds for n + 1 as well, so it actually holds for all n ∈ N. This
shows that the given sequence is monotonic and bounded, hence also convergent; denote its
limit by L. Using the definition of the sequence, we then find that

an+1 =
√
2an + 1 =⇒ lim

n→∞

an+1 = lim
n→∞

√
2an + 1 =⇒ L =

√
2L+ 1.

This gives the quadratic equation L2 = 2L + 1 which implies that L = 1 ±
√
2. Since the

terms of the sequence satisfy 1 ≤ an ≤ 3, however, the limit must be L = 1 +
√
2.


