1 Basic set theory

- We use capital letters to denote sets and lowercase letters to denote their elements.
- We write $A \subseteq B$ whenever every element of A is also an element of B.
- The union $A \cup B$ of two sets consists of the elements x with $x \in A$ or $x \in B$.
- The intersection $A \cap B$ of two sets consists of the elements x with $x \in A$ and $x \in B$.
- The difference $A - B$ of two sets consists of the elements x with $x \in A$, but $x \notin B$.

Theorem 1.1 – De Morgan’s laws

The difference of a union/intersection is the intersection/union of the differences, namely

$$A - (B \cup C) = (A - B) \cap (A - C), \quad A - (B \cap C) = (A - B) \cup (A - C).$$

Proof. To prove the statement about the difference of a union, one argues that

\[
x \in A - (B \cup C) \iff x \in A, \text{ but } x \notin B \cup C
\]

\[
\iff x \in A, \text{ but } x \notin B \text{ and } x \notin C
\]

\[
\iff x \in A - B \text{ and } x \in A - C
\]

\[
\iff x \in (A - B) \cap (A - C).
\]

Since the difference of an intersection can be treated similarly, we omit the details. \hfill \blacksquare

Definition 1.2 – Image of a set

Given a function $f: A \to B$ and a set $A_1 \subseteq A$, we define $f(A_1) = \{ f(x) : x \in A_1 \}$.

Theorem 1.3 – Properties of images

Let $f: A \to B$ be a function and let $A_1, A_2 \subseteq A$ be arbitrary.

(a) If $A_1 \subseteq A_2$, then $f(A_1) \subseteq f(A_2)$.

(b) One has $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$.

(c) One has $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$ and equality holds when f is injective.

(d) One has $f(A_1 - A_2) \supseteq f(A_1) - f(A_2)$ and equality holds when f is injective.

- Thus, images preserve inclusions and unions, but not intersections and differences.
Proof. To prove the first part, suppose that \(A_1 \subseteq A_2 \). We then have
\[
y \in f(A_1) \implies y = f(x) \text{ for some } x \in A_1
\]
\[
\implies y = f(x) \text{ for some } x \in A_2
\]
\[
\implies y \in f(A_2).
\]
This implies that \(f(A_1) \subseteq f(A_2) \), as needed. To prove the second part, we note that
\[
y \in f(A_1 \cup A_2) \iff y = f(x) \text{ for some } x \in A_1 \cup A_2
\]
\[
\iff y = f(x) \text{ for some } x \in A_1 \text{ or some } x \in A_2
\]
\[
\iff y \in f(A_1) \text{ or } y \in f(A_2)
\]
\[
\iff y \in f(A_1) \cup f(A_2).
\]
Next, we turn to the third part. To prove the inclusion, one argues that
\[
y \in f(A_1 \cap A_2) \implies y = f(x) \text{ for some } x \in A_1 \cap A_2
\]
\[
\implies y = f(x) \text{ with } x \in A_1 \text{ and } x \in A_2
\]
\[
\implies y \in f(A_1) \text{ and } y \in f(A_2)
\]
\[
\implies y \in f(A_1) \cap f(A_2).
\]
This shows that \(f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2) \), as needed. If it happens that \(f \) is injective, then we can also establish the opposite inclusion. In that case, one has
\[
y \in f(A_1) \cap f(A_2) \implies y = f(x_1) \text{ for some } x_1 \in A_1 \text{ and } y = f(x_2) \text{ for some } x_2 \in A_2
\]
\[
\implies y = f(x_1) = f(x_2) \text{ with } x_1 \in A_1 \text{ and } x_2 \in A_2
\]
\[
\implies y = f(x_1) = f(x_2) \text{ with } x_1 = x_2 \in A_1 \cap A_2 \text{ (by injectivity)}
\]
\[
\implies y \in f(A_1 \cap A_2).
\]
This completes the proof of the third part. The proof of the last part is quite similar. \(\blacksquare\)

Example 1.4 Consider the case \(f(x) = x^2 \). If we take \(A_1 = [-1, 0] \) and \(A_2 = [0, 1] \), then
\[
A_1 \cap A_2 = \{0\}, \quad f(A_1 \cap A_2) = \{0\}, \quad f(A_1) = [0, 1] = f(A_2).
\]
In particular, \(f(A_1 \cap A_2) = \{0\} \) is a proper subset of \(f(A_1) \cap f(A_2) = [0, 1] \). Similarly,
\[
A_1 - A_2 = [-1, 0), \quad f(A_1 - A_2) = (0, 1], \quad f(A_1) - f(A_2) = \emptyset
\]
and so \(f(A_1) - f(A_2) \) could be a proper subset of \(f(A_1 - A_2) \) when \(f \) is not injective. \(\square\)

Definition 1.5 – Inverse image of a set

Given a function \(f: A \to B \) and a set \(B_1 \subseteq B \), we define its inverse image by
\[
f^{-1}(B_1) = \{x \in A : f(x) \in B_1\}.
\]
This set is defined for any function \(f \). In particular, \(f \) does not need to be bijective.
Example 1.6 Consider the case $f(x) = x^2$. The inverse image of $B_1 = [-2, -1]$ is then

$$f^{-1}(B_1) = \{ x \in \mathbb{R} : x^2 \in B_1 \} = \{ x \in \mathbb{R} : -2 \leq x^2 \leq -1 \} = \emptyset.$$

On the other hand, the inverse image of $B_2 = [1, 4]$ can be computed as

$$f^{-1}(B_2) = \{ x \in \mathbb{R} : x^2 \in B_2 \} = \{ x \in \mathbb{R} : 1 \leq x^2 \leq 4 \} = [1, 2] \cup [-2, -1].$$

Theorem 1.7 – Properties of inverse images

Let $f : A \to B$ be a function and let $B_1, B_2 \subseteq B$ be arbitrary.

(a) If $B_1 \subseteq B_2$, then $f^{-1}(B_1) \subseteq f^{-1}(B_2)$.

(b) One has $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$.

(c) One has $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.

(d) One has $f^{-1}(B_1 - B_2) = f^{-1}(B_1) - f^{-1}(B_2)$.

- Thus, inverse images preserve inclusions, unions, intersections and also differences.

Proof. To prove the first part, we assume that $B_1 \subseteq B_2$ and we note that

$$x \in f^{-1}(B_1) \implies f(x) \in B_1 \implies f(x) \in B_2 \implies x \in f^{-1}(B_2).$$

This implies that $f^{-1}(B_1) \subseteq f^{-1}(B_2)$, as needed. For the second part, one has

$$x \in f^{-1}(B_1 \cup B_2) \iff f(x) \in B_1 \cup B_2 \iff f(x) \in B_1 \text{ or } f(x) \in B_2 \iff x \in f^{-1}(B_1) \text{ or } x \in f^{-1}(B_2) \iff x \in f^{-1}(B_1) \cup f^{-1}(B_2).$$

This proves the statement in the second part, while the other two parts are similar. ■

Theorem 1.8 – Images and inverse images

Let $f : A \to B$ be a function. Let $A_1 \subseteq A$ and $B_1 \subseteq B$ be arbitrary.

(a) One has $f^{-1}(f(A_1)) \supseteq A_1$ and equality holds whenever f is injective.

(b) One has $f(f^{-1}(B_1)) \subseteq B_1$ and equality holds whenever f is surjective.

Proof. We only establish part (b), as part (a) is similar. First of all, we note that

$$y \in f(f^{-1}(B_1)) \implies y = f(x) \text{ for some } x \in f^{-1}(B_1) \implies y = f(x) \text{ and also } f(x) \in B_1 \implies y \in B_1.$$
This proves the inclusion \(f(f^{-1}(B_1)) \subseteq B_1 \). If we also assume that \(f \) is surjective, then

\[
y \in B_1 \implies y = f(x) \text{ for some } x \in A \text{ (by surjectivity)}
\]

\[
\implies y = f(x) \text{ for some } x \in A \text{ and } f(x) \in B_1
\]

\[
\implies y = f(x) \text{ and } x \in f^{-1}(B_1)
\]

\[
\implies y \in f(f^{-1}(B_1)).
\]

Thus, the inclusion \(B_1 \subseteq f(f^{-1}(B_1)) \) also holds and the two sets are actually equal. \(\blacksquare \)

Example 1.9 Consider the case \(f(x) = x^2 \). If we take \(A_1 = [0, 1] \) and \(B_1 = [-1, 1] \), then

\[
f(A_1) = [0, 1] \implies f^{-1}(f(A_1)) = \{x \in \mathbb{R} : 0 \leq x^2 \leq 1\} = [-1, 1].
\]

In particular, \(A_1 \) is a proper subset of \(f^{-1}(f(A_1)) \) and one similarly has

\[
f^{-1}(B_1) = \{x \in \mathbb{R} : -1 \leq x^2 \leq 1\} = [-1, 1] \implies f(f^{-1}(B_1)) = [0, 1] \neq B_1.
\]

\(\square \)

2 Infimum and supremum

Definition 2.1 – Minimum and maximum

If a set \(A \subseteq \mathbb{R} \) has a smallest element, then we call that element the minimum of \(A \) and we denote it by \(\min A \). If a set \(A \subseteq \mathbb{R} \) has a largest element, then we call that element the maximum of \(A \) and we denote it by \(\max A \).

Example 2.2 When it comes to the interval \(A = [1, 2] \), one has \(\min A = 1 \) and \(\max A = 2 \). When it comes to the interval \(B = [1, 2) \), however, \(\min B = 1 \) and \(\max B \) does not exist. \(\square \)

Example 2.3 Consider the set \(A = \{\frac{1}{n} : n \in \mathbb{N}\} = \{1, \frac{1}{2}, \frac{1}{3}, \ldots\} \). To show that \(\max A = 1 \), one checks that \(1 \) is an element of \(A \) and that \(1 \) is at least as large as any other element. In this case, it is clear that \(1 \in A \), while \(1 \geq x \) for all \(x \in A \) because \(1 \geq \frac{1}{n} \) for all \(n \in \mathbb{N} \). \(\square \)

Example 2.4 Consider the set \(A = \{\frac{1}{n} : n \in \mathbb{N}\} = \{1, \frac{1}{2}, \frac{1}{3}, \ldots\} \) as before. To show that \(A \) has no minimum, one checks that \(A \) has no smallest element. Given any element of \(A \), we must thus be able to find another element of \(A \) which is smaller. Now, let \(x \in A \) be given. Then \(x = \frac{1}{n} \) for some \(n \in \mathbb{N} \) and \(y = \frac{1}{n+1} \) is an element of \(A \) such that \(y < x \). This shows that the original element \(x \) was not the smallest, so \(A \) does not have a minimum. \(\square \)

Definition 2.5 – Upper bounds and supremum

We say that \(A \subseteq \mathbb{R} \) is bounded from above, if there exists a number \(x \) such that \(x \geq a \) for all \(a \in A \). In that case, we also say that \(x \) is an upper bound of \(A \). The least upper bound of \(A \) is called the supremum of \(A \) and it is denoted by \(\sup A \).

- Both the maximum and the supremum of \(A \) must be at least as large as all elements of \(A \). However, \(\max A \) must itself be an element of \(A \), whereas \(\sup A \) need not be.
Axiom of completeness

If $A \subseteq \mathbb{R}$ is nonempty and bounded from above, then A has a least upper bound.

Example 2.6 We show that the interval $A = (-\infty, 1)$ has no maximum. Indeed, let $x \in A$ be given and note that $x < 1$. The number $y = \frac{x + 1}{2}$ is the average of x and 1 which is easily seen to satisfy $x < y < 1$. This implies that y is an element of A which is larger than the original element x. Thus, x was not the largest element and A has no maximum. \Box

Example 2.7 Consider the interval $A = (-\infty, 1)$ once again. Upper bounds of A must be at least as large as every element of A, so the least upper bound should be sup $A = 1$. To prove this, we check (a) that 1 is an upper bound of A and (b) that 1 is the least upper bound. The first part is clear, as $1 \geq a$ for all $a \in A$. To establish the second part, we need to show that no number $x < 1$ is an upper bound of A. Given any $x < 1$, we must thus be able to find an element of A which is bigger than x. If we let $y = \frac{x + 1}{2}$ once again, then we have $x < y < 1$ and so y is an element of A which is bigger than x, as needed. \Box

Definition 2.8 – Lower bounds and infimum

We say that $A \subseteq \mathbb{R}$ is bounded from below, if there exists a number x such that $x \leq a$ for all $a \in A$. In that case, we also say that x is a lower bound of A. The greatest lower bound of A is called the infimum of A and it is denoted by inf A.

- Both the minimum and the infimum of A must be at least as small as all elements of A. However, min A must itself be an element of A, whereas inf A need not be.

Example 2.9 It is easy to see that $A = (0, \infty)$ has no minimum. Given any element $x \in A$, one has $x > 0$ and then $y = \frac{x}{2}$ satisfies $0 < y < x$, so it is an element of A which is smaller than x. To show that the infimum of A is inf $A = 0$, one needs to check (a) that 0 is a lower bound of A and (b) that 0 is the greatest lower bound. The first part is clear, as $0 \leq a$ for all $a \in A$. To establish the second part, we need to show that no number $z > 0$ is a lower bound of A. Given any $z > 0$, we must thus be able to find an element of A which is smaller than z. In fact, $y = \frac{z}{2}$ is such an element because $0 < y < z$, so $y \in A$ and also $y < z$. \Box

Theorem 2.10 – Relation between inf/min and sup/max

Suppose that A is a nonempty subset of \mathbb{R}.

(a) If min A exists, then inf A also exists and the two are equal. If inf A exists and it happens to be an element of A, then min A exists and the two are equal.

(b) If max A exists, then sup A also exists and the two are equal. If sup A exists and it happens to be an element of A, then max A exists and the two are equal.
Proof. We only prove the first part, as the second part is similar. If min \(A \) exists, then \(\min A \leq x \) for all \(x \in A \) and so \(\min A \) is a lower bound of \(A \). To show that it is the greatest lower bound, suppose \(y > \min A \). Then \(\min A \) is an element of \(A \) which is smaller than \(y \), so \(y \) is not a lower bound of \(A \) and the greatest lower bound is \(\min A \).

Similarly, suppose that \(\inf A \) exists and that \(\inf A \in A \). Then \(\inf A \leq x \) for all \(x \in A \) and \(\inf A \) is itself an element of \(A \), so \(\inf A \) is the smallest element of \(A \). ■

Theorem 2.11 – Existence of infimum

If \(A \subseteq \mathbb{R} \) is nonempty and bounded from below, then \(A \) has a greatest lower bound.

Proof. We consider the set \(B = \{ x \in \mathbb{R} : -x \in A \} \). This consists of the negatives of the elements of \(A \), so any lower bound of \(A \) should be an upper bound of \(B \) and vice versa.

First of all, we show that \(B \) is bounded from above. Since \(A \) is bounded from below, there exists a real number \(z \) such that \(z \leq a \) for all \(a \in A \). This implies that \(-z \geq -a \) for all \(a \in A \), so \(-z \geq b \) for all \(b \in B \). We conclude that \(-z \) is an upper bound of \(B \).

Since \(B \) is bounded from above, \(\sup B \) exists by the axiom of completeness. We now show that \(-\sup B \) is the greatest lower bound of \(A \). In fact, we have

\[
\sup B \geq b \text{ for all } b \in B \implies -\sup B \leq -b \text{ for all } b \in B \\
-\sup B \leq a \text{ for all } a \in A
\]

and this means that \(-\sup B \) is a lower bound of \(A \). To show that it is the greatest one, suppose \(z > -\sup B \) and note that \(-z < \sup B \). Then \(-z \) is not an upper bound of \(B \), so there exists some \(b \in B \) such that \(-z < b \). This gives \(z > -b \), so \(-b \) is an element of \(A \) which is smaller than \(z \). In particular, \(z \) is not a lower bound of \(A \), as needed. ■

Theorem 2.12 – Inf/Sup of a subset

(a) Suppose that \(A \subseteq \mathbb{R} \) is nonempty and bounded from below. If \(B \subseteq A \), then \(B \) is bounded from below as well and one has \(\inf B \geq \inf A \).

(b) Suppose that \(A \subseteq \mathbb{R} \) is nonempty and bounded from above. If \(B \subseteq A \), then \(B \) is bounded from above as well and one has \(\sup B \leq \sup A \).

• Plainly stated, larger sets must have a larger supremum, but a smaller infimum.

Proof. We only prove the first part, as the second part is similar. Since \(A \) has a lower bound by assumption, its infimum \(\inf A \) exists and one has

\[
\inf A \leq x \text{ for all } x \in A \implies \inf A \leq x \text{ for all } x \in B.
\]

Thus, \(\inf A \) is a lower bound of \(B \), so \(B \) is bounded from below and \(\inf B \) exists. As \(\inf A \) is a lower bound of \(B \) and \(\inf B \) is the greatest lower bound of \(B \), one has \(\inf A \leq \inf B \). ■
Theorem 2.13 – Archimedean property

The set \mathbb{N} of natural numbers is not bounded from above. Given any real number x, that is, there exists a natural number n such that $n > x$.

Proof. To prove the first statement, suppose \mathbb{N} is bounded from above and let $\alpha = \sup \mathbb{N}$ be its least upper bound. Since $\alpha - 1$ is smaller, it is not an upper bound of \mathbb{N}, so there exists some $x \in \mathbb{N}$ such that $\alpha - 1 < x$. This gives $x + 1 > \alpha$ which means that $x + 1$ is a natural number that is actually larger than $\alpha = \sup \mathbb{N}$, a contradiction.

To prove the second statement, suppose $n \leq x$ for all $n \in \mathbb{N}$. Then x is an upper bound of \mathbb{N} and this contradicts the first statement. Thus, there exists $n \in \mathbb{N}$ such that $n > x$. ■

Example 2.14 Consider the set $A = \{ \frac{2n+1}{n+3} : n \in \mathbb{N} \}$. To show that $\sup A = 2$, we check that 2 is an upper bound and that it is the least upper bound. The first part is clear, as

$$2 \geq \frac{2n+1}{n+3} \quad \iff \quad 2n + 6 \geq 2n + 1 \quad \iff \quad 6 \geq 1.$$

To check the second part, suppose that $x < 2$. We need to find an element of A which is larger than x and this amounts to ensuring that $\frac{2n+1}{n+3} > x$. On the other hand, one has

$$\frac{2n+1}{n+3} > x \quad \iff \quad 2n + 1 > nx + 3x$$

$$\iff \quad (2-x)n > 3x - 1 \quad \iff \quad n > \frac{3x - 1}{2-x}.$$

Pick a natural number n that satisfies the rightmost inequality. Then $\frac{2n+1}{n+3} > x$, so there is an element of A which is larger than x. This shows that x is not an upper bound of A. ■

Theorem 2.15 – Nonempty subsets of \mathbb{N}

Every nonempty subset of \mathbb{N} must have a minimum.

Proof. Suppose that $A \subseteq \mathbb{N}$ is nonempty. Since $x \geq 1$ for all $x \in A$, the set A is then bounded from below and $\inf A$ exists. If we can show that $\inf A \in A$, then $\min A$ also exists and the two are equal. Thus, it suffices to show that $\inf A \in A$.

Since $\inf A + 1 > \inf A$, there exists an element $x \in A$ such that $\inf A \leq x < \inf A + 1$. If it happens that $\inf A = x$, then $\inf A \in A$ and the proof is complete. Otherwise, we must have $\inf A < x$ and we may proceed as before to find some element $y \in A$ such that

$$\inf A \leq y < x \quad \implies \quad \inf A \leq y < x < \inf A + 1.$$

This is impossible because two integers x, y cannot lie in an interval of length 1. ■
Consider a statement \(P(n) \) involving the natural numbers \(n \in \mathbb{N} \). Suppose that \(P(1) \) holds and that \(P(n) \) implies \(P(n + 1) \) for each \(n \in \mathbb{N} \). Then \(P(n) \) holds for all \(n \in \mathbb{N} \).

Proof. We study the set \(A = \{ n \in \mathbb{N} : P(n) \text{ does not hold} \} \). If we show that \(A \) is empty, then \(P(n) \) holds for all \(n \in \mathbb{N} \) and the result follows. Suppose then that \(A \) is nonempty. According to the previous theorem, it must have a least element \(m = \min A \).

Since \(P(1) \) holds by assumption, \(1 \notin A \) and so \(m > 1 \). In particular, \(m - 1 \) is a natural number which is smaller than the least element of \(A \), so \(m - 1 \notin A \) and \(P(m - 1) \) holds. It follows by assumption that \(P(m) \) also holds and this gives \(m \notin A \), a contradiction. ■

3 Open sets and convergence

Definition 3.1 – Open set

We say that a set \(A \subseteq \mathbb{R} \) is open in \(\mathbb{R} \) if, given any point \(x \in A \), there exists some \(\varepsilon > 0 \) such that \((x - \varepsilon, x + \varepsilon) \subseteq A \).

Example 3.2 Consider the interval \(A = [a, b) \) which contains its endpoint \(x = a \). If \(A \) was actually open in \(\mathbb{R} \), then we would have \((a - \varepsilon, a + \varepsilon) \subseteq A \) for some \(\varepsilon > 0 \). This is not the case, however, because points such as \(a + \frac{\varepsilon}{2} \) lie in \((a - \varepsilon, a + \varepsilon) \) but not in \(A \). ■

Theorem 3.3 – Unions and intersections of open sets

Every union of open sets is open and every finite intersection of open sets is open.

- Infinite intersections of open sets need not be open. For instance, \(U_n = (-\frac{1}{n}, \frac{1}{n}) \) is open in \(\mathbb{R} \) for each \(n \in \mathbb{N} \), but one has \(\bigcap_{n=1}^{\infty} U_n = \{0\} \) and this is not open in \(\mathbb{R} \).

Proof. Let us worry about unions first. We assume that the sets \(U_i \) are open in \(\mathbb{R} \) and we look at their union \(A = \bigcup_i U_i \). To show that \(A \) is open in \(\mathbb{R} \), let \(x \in A \) be given. Since \(x \) belongs to the union of the sets \(U_i \), we have \(x \in U_i \) for some \(i \). We can thus find some \(\varepsilon > 0 \) such that \((x - \varepsilon, x + \varepsilon) \subseteq U_i \) and this implies that \((x - \varepsilon, x + \varepsilon) \subseteq \bigcup_i U_i = A \).

Next, we prove the statement for intersections. Assume that the sets \(U_i \) are open in \(\mathbb{R} \) and let \(B = \bigcap_{i=1}^{n} U_i \). To show that \(B \) is open in \(\mathbb{R} \), let \(x \in B \) be given. Then \(x \in U_i \) for each \(i \) and there exist \(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n > 0 \) such that \((x - \varepsilon_i, x + \varepsilon_i) \subseteq U_i \) for each \(i \). If we now take \(\varepsilon > 0 \) to be the smallest of the numbers \(\varepsilon_i \), then \(\varepsilon \leq \varepsilon_i \) for each \(i \) and so

\[
(x - \varepsilon, x + \varepsilon) \subseteq (x - \varepsilon_i, x + \varepsilon_i) \subseteq U_i
\]

for each \(i \). It easily follows that \((x - \varepsilon, x + \varepsilon) \subseteq \bigcap_{i=1}^{n} U_i = B \), as needed. ■
Theorem 3.4 – Examples of open sets

(a) The intervals \((a, \infty)\), \((-\infty, b)\) and \((a, b)\) are open in \(\mathbb{R}\) for all \(a, b\).

(b) A set \(A \subseteq \mathbb{R}\) is open in \(\mathbb{R}\) if and only if it is a union of open intervals.

Proof. First, consider the interval \(A = (a, \infty)\). Given a point \(x \in A\), we have \(x > a\) and we need to find some \(\varepsilon > 0\) such that \((x - \varepsilon, x + \varepsilon) \subseteq A\). Letting \(\varepsilon = x - a\), we get

\[
y \in (x - \varepsilon, x + \varepsilon) \implies y > x - \varepsilon = a \implies y \in A.
\]

This shows that \(A = (a, \infty)\) is open in \(\mathbb{R}\). A similar argument shows that \(B = (-\infty, b)\) is also open in \(\mathbb{R}\), so their intersection \(A \cap B = (a, b)\) is open in \(\mathbb{R}\) as well.

Let us now turn to part (b). If a set is a union of open intervals, then it is a union of open sets, so it is open. Conversely, suppose \(A \subseteq \mathbb{R}\) is open. Given any \(x \in A\), we can find some \(\varepsilon_x > 0\) such that \((x - \varepsilon_x, x + \varepsilon_x) \subseteq A\). Since \(A\) is the union of its elements, we get

\[
A = \bigcup_{x \in A} \{x\} \subseteq \bigcup_{x \in A} (x - \varepsilon_x, x + \varepsilon_x) \subseteq A.
\]

Thus, the above sets are all equal and \(A\) itself is a union of open intervals. \(\square\)

Example 3.5 Consider the set \(A = \{x \in \mathbb{R} : x^3 > x\}\). To show that \(A\) is open in \(\mathbb{R}\), we first find the values of \(x\) such that \(x^3 > x\). Note that \(x^3 - x\) can be factored as

\[
x^3 - x = x(x^2 - 1) = x(x - 1)(x + 1).
\]

When \(x < -1\), all three factors are negative, so the product is negative. When \(-1 < x < 0\), only two factors are negative, so the product is positive. Arguing in this manner, one finds that \(A = (-1, 0) \cup (1, \infty)\). Thus, \(A\) is open in \(\mathbb{R}\) by the previous theorem. \(\square\)

Definition 3.6 – Convergence of sequences

A sequence \(\{x_n\}\) of real numbers converges to \(x\) as \(n \to \infty\) if, given any \(\varepsilon > 0\), there exists a natural number \(N\) such that \(x_n \in (x - \varepsilon, x + \varepsilon)\) for all \(n \geq N\). In that case, we call \(x\) the limit of the sequence and we write \(x_n \to x\) as \(n \to \infty\).

Theorem 3.7 – Monotone convergence theorem

(a) If a sequence \(\{x_n\}\) is increasing and bounded from above, then \(\{x_n\}\) converges.

(b) If a sequence \(\{x_n\}\) is decreasing and bounded from below, then \(\{x_n\}\) converges.

Proof. We only prove the first part, as the second part is similar. Our goal is to show that the sequence converges to \(\sup A\), where \(A = \{x_1, x_2, \ldots\}\). Let \(\varepsilon > 0\) be given. As \(\sup A - \varepsilon\) is smaller than the least upper bound of \(A\), there exists \(x_N \in A\) such that \(x_N > \sup A - \varepsilon\). Since the sequence is increasing, this actually gives \(x_n \geq x_N > \sup A - \varepsilon\) for all \(n \geq N\). On the other hand, \(\sup A\) is an upper bound of \(A\), so \(\sup A \geq x_n\) for all \(n\). We thus have

\[
\sup A - \varepsilon < x_N \leq x_n \leq \sup A < \sup A + \varepsilon
\]

for all \(n \geq N\). In other words, \(x_n \in (\sup A - \varepsilon, \sup A + \varepsilon)\) for all \(n \geq N\), as needed. \(\square\)
Theorem 3.8 – Squeeze theorem

If \(x_n \leq y_n \leq z_n \) for all \(n \in \mathbb{N} \) and \(x_n, z_n \to \alpha \) as \(n \to \infty \), then \(y_n \to \alpha \) as \(n \to \infty \).

Proof. Let \(\varepsilon > 0 \) be given. Since \(x_n \to \alpha \) as \(n \to \infty \), there exists a natural number \(N_1 \) such that \(x_n \in (\alpha - \varepsilon, \alpha + \varepsilon) \) for all \(n \geq N_1 \). Since \(z_n \to \alpha \) as \(n \to \infty \), there also exists a natural number \(N_2 \) such that \(z_n \in (\alpha - \varepsilon, \alpha + \varepsilon) \) for all \(n \geq N_2 \). We must thus have

\[
\alpha - \varepsilon < x_n, z_n < \alpha + \varepsilon
\]

for all \(n \geq \max\{N_1, N_2\} \). Since \(x_n \leq y_n \leq z_n \) by assumption, this implies that

\[
\alpha - \varepsilon < x_n \leq y_n \leq z_n < \alpha + \varepsilon
\]

for all \(n \geq \max\{N_1, N_2\} \). In other words, it implies that \(y_n \to \alpha \) as \(n \to \infty \). \(\blacksquare \)

Theorem 3.9 – Convergence in terms of open intervals/sets

The following statements are equivalent whenever \(\{x_n\} \) is a sequence and \(x \in \mathbb{R} \).

(a) One has \(x_n \to x \) as \(n \to \infty \).

(b) Given any \(\varepsilon > 0 \), there exists \(N \in \mathbb{N} \) such that \(x_n \in (x - \varepsilon, x + \varepsilon) \) for all \(n \geq N \).

(c) Given any open \(U \) with \(x \in U \), there exists \(N \in \mathbb{N} \) such that \(x_n \in U \) for all \(n \geq N \).

Proof. The first two parts are equivalent by definition.

To show that (b) implies (c), suppose \(U \) is open and \(x \in U \). Then \((x - \varepsilon, x + \varepsilon) \subseteq U \) for some \(\varepsilon > 0 \) and one may use part (b) to find some \(N \in \mathbb{N} \) such that \(x_n \in (x - \varepsilon, x + \varepsilon) \) for all \(n \geq N \). This implies that \(x_n \in (x - \varepsilon, x + \varepsilon) \subseteq U \) for all \(n \geq N \), so part (c) follows.

To prove that (c) implies (b), let \(\varepsilon > 0 \) be given and take \(U = (x - \varepsilon, x + \varepsilon) \). Then \(U \) is an open set that contains \(x \), so one may use part (c) to find some \(N \in \mathbb{N} \) such that \(x_n \in U \) for all \(n \geq N \). This gives \(x_n \in (x - \varepsilon, x + \varepsilon) \) for all \(n \geq N \), so part (b) follows. \(\blacksquare \)