Problems 1-4 due by Jan. 31st*

1. Let $f: A \to B$ be a function and let $B_1, B_2 \subseteq B$ be arbitrary. Show that

$$f^{-1}(B_1 - B_2) = f^{-1}(B_1) - f^{-1}(B_2).$$

2. Let $f: A \to B$ be a function and let $A_1 \subseteq A$ be arbitrary. Show that

$$f^{-1}(f(A_1)) \supseteq A_1$$

and that equality holds whenever the function f is injective.

- **3.** Show that the set $A = \left\{\frac{2n+1}{n+3} : n \in \mathbb{N}\right\}$ has a minimum but no maximum.
- **4.** Let A, B be nonempty subsets of \mathbb{R} such that $\sup A < \sup B$. Show that there exists an element $b \in B$ which is an upper bound of A.

.....

- **5.** Show that $(A \cap B) \cup (A B) = A$ for any sets A, B.
- **6.** Let $f: A \to B$ and $g: B \to C$ be two functions and let $g \circ f: A \to C$ denote their composition. Given a set $C_1 \subseteq C$, show that $(g \circ f)^{-1}(C_1) = f^{-1}(g^{-1}(C_1))$.
- 7. Determine the minimum of the set $A = \{2x^2 3x : x \in \mathbb{R}\}.$
- 8. Determine the maximum of the set $A = \{x \in \mathbb{R} : x^3 \le 7x 6\}$.
- **9.** Determine the min, inf, max and sup of the following sets, noting that some of these quantities may fail to exist. You do not need to justify your answers.
 - (a) $A = \left\{ n \in \mathbb{N} : \frac{n}{n+1} < \frac{2019}{2020} \right\}$ (b) $B = \left\{ x \in \mathbb{R} : x > 1 \text{ and } 2x \le 5 \right\}$ (c) $C = \left\{ x \in \mathbb{Z} : x > 1 \text{ and } 2x \le 5 \right\}$ (d) $D = \left\{ x \in \mathbb{R} : x < y \text{ for all } y > 0 \right\}$
- **10.** Show that the set $A = \{x + \frac{1}{x} : x > 0\}$ is such that $\inf A = 2$.
- 11. Show that the set $B = \{x \in \mathbb{R} : |2x 3| < 5\}$ is such that $\sup B = 4$.
- **12.** Suppose that A, B are nonempty subsets of \mathbb{R} which are bounded from above. Show that $A \cup B$ is also bounded from above and $\sup(A \cup B) = \max\{\sup A, \sup B\}$.

^{*}You may submit your solutions Wednesday in class, Thursday in class or Friday 11-12 in my office.

- **1.** One needs to show that $x \in f^{-1}(B_1 B_2)$ if and only if $x \in f^{-1}(B_1) f^{-1}(B_2)$.
- **2.** For the first part, assume that $x \in A_1$ and show that $x \in f^{-1}(f(A_1))$. For the second part, assume that $x \in f^{-1}(f(A_1))$. This gives $f(x) \in f(A_1)$ and so f(x) = f(z) for some $z \in A_1$. You need to conclude that $x \in A_1$.
- **3.** Argue that $a_n = \frac{2n+1}{n+3}$ is strictly increasing, namely that $a_n < a_{n+1}$ for each $n \in \mathbb{N}$.
- 4. By definition, $\sup B$ is the least upper bound of B. Since $\sup A$ is even smaller, we find that $\sup A$ is not an upper bound of B. What does this imply?
- **5.** If we start with an element $x \in (A \cap B) \cup (A B)$, then we have either $x \in A \cap B$ or $x \in A B$. Consider these cases to conclude that $x \in A$. If we start with an element $x \in A$, then we have either $x \in B$ or $x \notin B$. Deduce that $x \in (A \cap B) \cup (A B)$.
- 6. To show that the given sets are equal, one needs to argue that

$$x \in (g \circ f)^{-1}(C_1) \quad \Longleftrightarrow \quad (g \circ f)(x) \in C_1 \quad \Longleftrightarrow \quad g(f(x)) \in C_1 \\ \iff \quad f(x) \in g^{-1}(C_1) \quad \Longleftrightarrow \quad x \in f^{-1}(g^{-1}(C_1)).$$

- 7. The derivative of $f(x) = 2x^2 3x$ is f'(x) = 4x 3. This is negative when x < 3/4 and it is positive when x > 3/4, so the minimum value is f(3/4) = -9/8.
- 8. We need to find all numbers x such that $x^3 7x + 6 \le 0$. If we now factor the left hand side, we get $(x-1)(x-2)(x+3) \le 0$ and this implies $A = (-\infty, -3] \cup [1, 2]$.
- **9.** For the first set, $\frac{n}{n+1} < \frac{2019}{2020}$ if and only if n < 2019. This gives $A = \{1, 2, \dots, 2018\}$. For the second set, we have $1 < x \leq \frac{5}{2}$ and thus $B = (1, \frac{5}{2}]$. The third set is defined similarly, but it consists of integers, so $C = \{2\}$. Finally, the fourth set consists of all numbers x that are smaller than every positive number, so $D = (-\infty, 0]$.
- 10. Show that $x + \frac{1}{x} \ge 2$ for all x > 0 and that equality holds when x = 1. This shows that 2 is a lower bound of A and that $2 \in A$. Can there be a larger lower bound?
- 11. If you simplify the given definition, then you will find that B = (-1, 4).
- **12.** Let $\alpha = \sup A$ and $\beta = \sup B$ for convenience. We may assume that $\alpha \leq \beta$, as the case $\beta \leq \alpha$ is similar. Start by showing that $x \leq \beta$ for all $x \in A \cup B$. This makes β an upper bound of $A \cup B$. To show that it is the least, suppose that $y < \beta$ and try to find an element of $A \cup B$ which is bigger than y.

Problems 1-4 due by Feb. 7th^{*}

- **1.** Show that $A = \left\{\frac{4n+3}{2n-1} : n \in \mathbb{N}\right\}$ is bounded from below and that $\inf A = 2$.
- **2.** Let $A \subseteq \mathbb{R}$ be nonempty and bounded from above. Fix some real number x < 0 and consider the set $B = \{ax : a \in A\}$. Show that $\inf B = x \sup A$.
- **3.** Let $A \subseteq \mathbb{R}$ be nonempty, open and bounded from above. Show that $\sup A \notin A$.
- **4.** Let $\{x_n\}$ be a sequence of real numbers such that $x_n \to x$ as $n \to \infty$ and consider the sequence $\{y_n\}$ defined by $y_n = \frac{1}{2}(3x_n + x_{n+1})$ for each $n \ge 1$. Use the definition of convergence to show that $y_n \to 2x$ as $n \to \infty$.

- **5.** Show that $A = \left\{ \frac{m}{m+n} : m, n \in \mathbb{N} \right\}$ is bounded from above and that $\sup A = 1$.
- **6.** Suppose that A, B are subsets of \mathbb{R} such that $\inf A < \sup B$. Show that there exist an element $a \in A$ and an element $b \in B$ such that $\inf A \le a < b \le \sup B$.
- **7.** Let $A \subseteq \mathbb{Z}$ be nonempty and bounded from below. Show that A has a minimum.
- 8. Show that each of the following sets is open in \mathbb{R} .

$$A = \left\{ x \in \mathbb{R} : x^3 > 13x - 12 \right\}, \qquad B = \left\{ 0 < x < 1 : \frac{1}{x} \notin \mathbb{N} \right\}.$$

- **9.** Do there exist sets $A, B \subseteq \mathbb{R}$ such that A, B, A B are all nonempty and open?
- **10.** Suppose that $A \subseteq \mathbb{R}$ is nonempty and bounded from above. Show that there exists a sequence of points $x_n \in A$ such that $x_n \to \sup A$ as $n \to \infty$.
- **11.** Define a sequence $\{a_n\}$ by setting $a_1 = 1$ and $a_{n+1} = \sqrt{2a_n + 1}$ for each $n \ge 1$. Show that $a_n < a_{n+1} < 3$ for all $n \in \mathbb{N}$ and that the sequence $\{a_n\}$ converges.
- **12.** Suppose that $A, B \subseteq \mathbb{R}$ are nonempty and bounded from above. Show that the set

$$C = \{x \in \mathbb{R} : x = a + b \text{ for some } a \in A \text{ and } b \in B\}$$

is also bounded from above and that $\sup C = \sup A + \sup B$.

^{*}You may submit your solutions Wednesday/Thursday in class or else Friday by 1pm in my office.

- 1. It is easy to check that 2 is a lower bound of A. To show that it is the greatest lower bound, suppose x > 2 and try to find an element of A which is smaller than x. This amounts to solving the inequality $\frac{4n+3}{2n-1} < x$ in terms of n.
- 2. First, you need to check that $x \sup A$ is a lower bound of B. Then, you need to show that it is the greatest lower bound. Suppose $y > x \sup A$, in which case $y/x < \sup A$. Since y/x is smaller than $\sup A$, there exists an element $a \in A$ such that y/x < a.
- **3.** If sup $A \in A$, then $(\sup A \varepsilon, \sup A + \varepsilon) \subseteq A$ for some $\varepsilon > 0$. Why is this impossible?
- **4.** Let $\varepsilon > 0$ be given. Then there exists some $N \in \mathbb{N}$ such that $x \varepsilon < x_n < x + \varepsilon$ for all $n \ge N$. This also implies that $x \varepsilon < x_{n+1} < x + \varepsilon$ for all $n \ge N$.
- 5. It is easy to check that 1 is an upper bound. To show that it is the least upper bound, suppose x < 1 and try to find an element of A which is bigger. It suffices to look for an element of the form $\frac{m}{m+1}$, so you need to ensure that $\frac{m}{m+1} > x$ for some $m \in \mathbb{N}$.
- **6.** Since $\inf A$ is smaller than $\sup B$, it is not an upper bound of B, so there exists an element $b \in B$ such that $\inf A < b$. Since b is larger than $\inf A$, it is not a lower bound of A, so there exists an element $a \in A$ such that a < b.
- 7. Since A is bounded from below, $\inf A$ exists. Since $\inf A + 1$ is larger than $\inf A$, there exists an element $x \in A$ such that $\inf A \leq x < \inf A + 1$. If equality holds, then $\inf A = x \in A$ and we have $\inf A = \min A$. Otherwise, we have $\inf A < x$ and we can proceed as before to find another element $y \in A$ such that $\inf A \leq y < x < \inf A + 1$.
- 8. Try to express the given sets as unions of open intervals. For the first set, one checks that $x^3 13x + 12 = (x 1)(x 3)(x + 4)$ which implies $A = (-4, 1) \cup (3, \infty)$. The second set is (0, 1) with $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$ removed. It is the union of the intervals $(\frac{1}{n+1}, \frac{1}{n})$.
- **9.** Yes. Is it possible that A, B and A B are all unions of open intervals?
- **10.** Since $\sup A \frac{1}{n} < \sup A$ for each $n \in \mathbb{N}$, there exists an element $x_n \in A$ such that $\sup A \frac{1}{n} < x_n$ for each $n \in \mathbb{N}$. This gives $\sup A \frac{1}{n} < x_n \le \sup A$ for each $n \in \mathbb{N}$.
- **11.** Use induction on n to show that $a_n < a_{n+1} < 3$ for all $n \in \mathbb{N}$.
- 12. It is easy to check that $\sup A + \sup B$ is an upper bound of C. To show that it is the least upper bound, suppose $x < \sup A + \sup B$. Then $x \sup B < \sup A$, so there exists an element $a \in A$ such that $x \sup B < a$. Rearrange this inequality in a way that will allow you to proceed with the argument.

Problems 1-4 due by Feb. 14th^{*}

- **1.** Let $A \subseteq \mathbb{R}$ be nonempty, closed and bounded from above. Show that max A exists.
- **2.** Show that $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$ for any sets $A, B \subseteq \mathbb{R}$.
- **3.** Let $A, B \subseteq \mathbb{R}$ be arbitrary. Show that $(A \cup B)^{\circ}$ and $A^{\circ} \cup B^{\circ}$ are not necessarily equal, but one of these sets is always contained in the other.
- 4. Show that the closure of the complement is the complement of the interior. In other words, show that $\overline{A^c} = (A^\circ)^c$ for any set $A \subseteq \mathbb{R}$.

.....

- **5.** Suppose $A \subseteq \mathbb{R}$ is open in \mathbb{R} and $B \subseteq \mathbb{R}$ is closed. Show that A B is open in \mathbb{R} .
- **6.** Show that each of the following sets is closed in \mathbb{R} .

$$A = \{ x \in \mathbb{R} : x^4 \le 5x^2 - 4 \}, \qquad B = \{ x \in \mathbb{R} : x^3 \le 3x - 2 \}.$$

- 7. Find a sequence of nested intervals I_n such that their intersection $\bigcap_{n=1}^{\infty} I_n$ is empty.
- 8. Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$ for any sets $A, B \subseteq \mathbb{R}$.
- **9.** Let $A, B \subseteq \mathbb{R}$ be arbitrary. Show that $\overline{A \cap B}$ and $\overline{A} \cap \overline{B}$ are not necessarily equal, but one of these sets is always contained in the other.
- **10.** Show that a set $A \subseteq \mathbb{R}$ is closed in \mathbb{R} if and only if A contains its limit points.
- **11.** Suppose that $A \subseteq \mathbb{R}$ is nonempty and $x \in \mathbb{R}$ is a limit point of A. Show that every neighbourhood of x must contain infinitely many points of A.
- **12.** Suppose that $A \subseteq \mathbb{R}$ is open in \mathbb{R} . Show that the set of limit points A' is equal to the closure \overline{A} . Is this statement true for an arbitrary subset of \mathbb{R} ?

^{*}You may submit your solutions Wednesday/Thursday in class or else Friday by 1pm in my office.

- 1. It suffices to show that $\sup A$ is an element of A, as this implies $\max A = \sup A$. If it is not an element of A, then it is an element of A^c . Since this set is open, we must then have $(\sup A \varepsilon, \sup A + \varepsilon) \subseteq A^c$ for some $\varepsilon > 0$. Why is that a contradiction?
- **2.** To prove one of the inclusions, note that $A^{\circ} \subseteq A$ and $B^{\circ} \subseteq B$. Then $A^{\circ} \cap B^{\circ} \subseteq A \cap B$, so $A^{\circ} \cap B^{\circ}$ is an open set that is contained in $A \cap B$. To prove the opposite inclusion, note that $A \cap B \subseteq A$ implies $(A \cap B)^{\circ} \subseteq A^{\circ}$ and $A \cap B \subseteq B$ implies $(A \cap B)^{\circ} \subseteq B^{\circ}$.
- **3.** If we let A = [0, 1] and B = [1, 2], then $(A \cup B)^{\circ} = (0, 2)$ and $A^{\circ} \cup B^{\circ} = (0, 1) \cup (1, 2)$. On the other hand, one always has $A^{\circ} \cup B^{\circ} \subseteq A \cup B$ and thus $A^{\circ} \cup B^{\circ} \subseteq (A \cup B)^{\circ}$.
- 4. If $x \in \overline{A^c}$, then every neighbourhood of x intersects A^c . Can x have a neighbourhood that is contained in A? If $x \in (A^\circ)^c$, then $x \notin A^\circ$ and there is no neighbourhood of x that is contained in A. Conclude that every neighbourhood of x intersects A^c .
- 5. The set A B consists of all points $x \in A$ with $x \notin B$. That is, $A B = A \cap B^c$.
- 6. Solve the given inequalities to find that $A = [-2, -1] \cup [1, 2]$ and $B = (-\infty, -2] \cup \{1\}$.
- 7. Two simple examples are provided by the intervals $I_n = (0, \frac{1}{n}]$ and $I_n = (0, \frac{1}{n})$.
- 8. To prove one of the inclusions, recall that $A \subseteq \overline{A}$ and $B \subseteq \overline{B}$. Then $A \cup B \subseteq \overline{A} \cup \overline{B}$ and this gives a closed set that contains $A \cup B$. To prove the opposite inclusion, note that $A \subseteq A \cup B$ implies $\overline{A} \subseteq \overline{A \cup B}$ and $B \subseteq A \cup B$ implies $\overline{B} \subseteq \overline{A \cup B}$.
- **9.** If we let A = (0, 1) and B = (1, 2), then $\overline{A \cap B} = \emptyset$ and $\overline{A} \cap \overline{B} = \{1\}$. On the other hand, one always has $A \cap B \subseteq \overline{A} \cap \overline{B}$ and thus $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$.
- **10.** Recall that $\overline{A} = A \cup A'$, while A is closed if and only if $\overline{A} = A$. If A contains its limit points, then $\overline{A} = A \cup A' = A$, so A is closed. If A is closed, then $A' \subseteq A \cup A' = \overline{A} = A$.
- 11. Suppose there is a neighbourhood U of x which intersects A at finitely many points other than x and let $B = \{x_1, x_2, \ldots, x_n\}$ consist of these points. Show that U B is a neighbourhood of x which does not intersect A at a point other than x.
- 12. Since $\overline{A} = A \cup A'$, it is always true that $A' \subseteq A \cup A' = \overline{A}$. To show that the opposite inclusion does not hold in general, note that $A = \{0\}$ satisfies $A' = \emptyset$ and $\overline{A} = A$. If it happens that A is open and $x \in A$, then $(x \varepsilon, x + \varepsilon) \subseteq A$ for some $\varepsilon > 0$. You need to show that every neighbourhood of x intersects A at a point other than x.

Problems 1-4 due by Feb. 21st*

1. Show that the function $f : \mathbb{R} \to \mathbb{R}$ is not continuous at all points when

$$f(x) = \left\{ \begin{array}{cc} x^2 & \text{if } x \le 1\\ 2x & \text{if } x > 1 \end{array} \right\}.$$

- **2.** Suppose that $B \subseteq \mathbb{R}$ is open in \mathbb{R} and let $A \subseteq B \subseteq \mathbb{R}$. Show that A is open in B if and only if A is open in \mathbb{R} .
- **3.** Let $A, B \subseteq \mathbb{R}$. Show that a function $f: A \to B$ is continuous at all points if and only if the inverse image $f^{-1}(K)$ is closed in A whenever K is closed in B.
- **4.** Show that $f: [0,1] \to \mathbb{R}$ is uniformly continuous when $f(x) = x^3$ for all x.

- **5.** Show that $A = \{x \in \mathbb{R} : f(x) \neq 0\}$ is open in \mathbb{R} whenever $f : \mathbb{R} \to \mathbb{R}$ is continuous.
- **6.** Suppose that $f: [0,1] \to [0,1]$ is continuous. Show that f(x) = x for some $x \in [0,1]$.
- 7. Suppose that $f \colon \mathbb{R} \to \mathbb{R}$ is continuous and $|f(x)| \leq 3$ for all $x \in \mathbb{R}$. Show that there exists some real number x such that f(x) = x.
- 8. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous and f has a root in every open interval (a, b). Show that f is the zero function, namely that f(x) = 0 for all $x \in \mathbb{R}$.
- **9.** Show that every subset of A is open in A when $A \subseteq \mathbb{R}$ has finitely many elements.
- **10.** Suppose $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$ is uniformly continuous with $|f(x)| \ge 2$ for all x. Show that $g: A \to \mathbb{R}$ is also uniformly continuous when g(x) = 1/f(x) for all x.
- **11.** Show that $f: (0,1) \to \mathbb{R}$ is not uniformly continuous when f(x) = 1/x for all x.
- **12.** Let $A, B \subseteq \mathbb{R}$ and let $i: B \to \mathbb{R}$ be the inclusion map which is defined by i(x) = x for all $x \in B$. Show that a function $f: A \to B$ is continuous at all points if and only if the composition $i \circ f: A \to \mathbb{R}$ is continuous at all points.

^{*}You may submit your solutions Wednesday/Thursday in class or else Friday by 1pm in my office.

Answers and hints

- 1. It suffices to find an open set U whose inverse image $f^{-1}(U)$ is not open. Consider an open interval such as $U = (\frac{1}{4}, 2)$. Its inverse image is the union of two intervals.
- **2.** To say that A is open in B is to say that $A = U \cap B$ for some set U which is open in \mathbb{R} . Use this fact along with the assumption that B itself is open in \mathbb{R} .
- **3.** To say that K is closed in B is to say that B K is open in B. Use this fact along with the identity $f^{-1}(B K) = f^{-1}(B) f^{-1}(K) = A f^{-1}(K)$.
- 4. Try to verify that $|f(x) f(y)| \le k|x y|$ for some fixed constant k > 0.
- **5.** Express A as the union of $A^+ = \{x \in \mathbb{R} : f(x) > 0\}$ and $A^- = \{x \in \mathbb{R} : f(x) < 0\}.$
- 6. The result is clear, if f(0) = 0 or f(1) = 1. Suppose f(0) > 0 and f(1) < 1. To show that f(x) = x for some $x \in (0, 1)$, one needs g(x) = f(x) x to have a root in (0, 1).
- 7. The function g(x) = f(x) x is the difference of two continuous functions and thus continuous. Show that g(4) must be negative, while g(-4) must be positive.
- 8. Let $x \in \mathbb{R}$ be arbitrary. By assumption, f has a root $x_n \in (x, x + \frac{1}{n})$ for each $n \in \mathbb{N}$. Note that $x_n \to x$ by the Squeeze Theorem and that $f(x_n) \to f(x)$ by continuity.
- **9.** Every set that has finitely many elements is closed in \mathbb{R} . If we assume that $B \subseteq A$, then B is closed in \mathbb{R} , so $B \cap A = B$ is closed in A. Why is it also open in A?
- **10.** Try to verify that $|g(x) g(y)| \le \frac{1}{4}|f(x) f(y)|$ for all $x, y \in A$.
- 11. If the definition of uniform continuity holds when $\varepsilon = 1$, there exists $\delta > 0$ such that

$$|x-y| < \delta \implies |f(x) - f(y)| < 1$$

for all 0 < x, y < 1. Consider the points $x = \frac{1}{n}$ and $y = \frac{1}{n+1}$ for any integer $n > \frac{2}{\delta}$.

12. Inclusions are always continuous. If f is continuous, then $i \circ f$ is the composition of continuous functions and thus continuous. Conversely, suppose $i \circ f$ is continuous. To show that f is continuous, one needs to check that $f^{-1}(U)$ is open in A for each set U which is open in B. Start by writing $U = V \cap B$ for some set V which is open in \mathbb{R} .

Problems 1-4 due by Feb. 28th^{*}

- **1.** Suppose that $\{x_n\}$ is a sequence of real numbers such that $x_n \leq \alpha$ for all $n \in \mathbb{N}$. If it happens that $\{x_n\}$ converges to some number x, show that $x \leq \alpha$ as well.
- 2. What can you say about a Cauchy sequence which consists entirely of integers?
- **3.** Let $A, B \subseteq \mathbb{R}$ and suppose that $f: A \to B$ is uniformly continuous. Given a Cauchy sequence $\{x_n\}$ of elements of A, show that $\{f(x_n)\}$ is a Cauchy sequence as well.
- **4.** Let $A \subseteq \mathbb{R}$. Show that A is a dense subset of \mathbb{R} , if and only if every nonempty open subset of \mathbb{R} intersects A at some point.
 -
- 5. Show that the sequence $\{x_n\}$ is Cauchy, and thus convergent, when

$$x_n = \frac{\sin 1}{2} + \frac{\sin 2}{4} + \dots + \frac{\sin n}{2^n}$$
 for each $n \ge 1$.

- **6.** Which of the following subsets of \mathbb{R} are complete? Explain.
 - $A = [0, 1), \qquad B = \mathbb{Z}, \qquad C = \mathbb{Q}, \qquad D = \{x \in \mathbb{R} : x^2 \ge \sin x\}.$
- 7. Show that the Bolzano-Weierstrass theorem implies the nested interval property.
- 8. Let $0 < \alpha < 1$. Show that a sequence $\{x_n\}$ of real numbers is Cauchy, if it satisfies

$$|x_{n+1} - x_n| \le \alpha \cdot |x_n - x_{n-1}| \quad \text{for each } n \ge 2.$$

- **9.** Suppose that $\{x_n\}$ is an increasing sequence of real numbers which has a convergent subsequence. Show that the whole sequence $\{x_n\}$ converges as well.
- 10. Show that there exists an irrational number between any two real numbers.
- **11.** Suppose that $f : \mathbb{R} \to \mathbb{R}$ is both continuous and surjective. Given a set $A \subseteq \mathbb{R}$ which is a dense subset of \mathbb{R} , show that its image f(A) is also a dense subset of \mathbb{R} .
- **12.** Suppose that $f, g: \mathbb{R} \to \mathbb{R}$ are continuous and let $A \subseteq \mathbb{R}$ be a dense subset of \mathbb{R} such that f(x) = g(x) for all $x \in A$. Show that f(x) = g(x) for all $x \in \mathbb{R}$.

^{*}You may submit your solutions Wednesday/Thursday in class or else Friday by 1pm in my office.

Answers and hints

- **1.** Suppose that $x > \alpha$ and use the definition of convergence with $\varepsilon = x \alpha$.
- **2.** There must exist a natural number N such that $x_n = x_N$ for all $n \ge N$. To show this, use the definition of a Cauchy sequence with $\varepsilon = 1$.
- **3.** Let $\varepsilon > 0$ be given. Since f is uniformly continuous, there exists $\delta > 0$ such that

 $|x-y| < \delta \implies |f(x) - f(y)| < \varepsilon$

for all $x, y \in A$. Combine this fact with the definition of a Cauchy sequence.

- **4.** To say that A is dense in \mathbb{R} is to say that $\overline{A} = \mathbb{R}$. Use Theorem 4.12 in the notes.
- 5. One needs to show that $|x_m x_n|$ becomes arbitrarily small for large enough m, n. Assume that m > n without loss of generality and show that $|x_m - x_n| < 1/2^n$.
- 6. A subset of \mathbb{R} is complete if and only if it is closed in \mathbb{R} . In this case, A is not closed because it fails to contain a limit point and C is not closed because $\overline{C} = \mathbb{R} \neq C$. On the other hand, it is easy to check that B, D are closed in \mathbb{R} and thus complete.
- 7. Consider a nested sequence of closed intervals $I_n = [a_n, b_n]$. Since $\{a_n\}$ is a bounded sequence, it contains a convergent subsequence. Show that its limit is in I_n for all n.
- 8. One needs to show that $|x_m x_n|$ becomes arbitrarily small for large enough m, n. Assume that m > n without loss of generality and argue that

$$|x_m - x_n| \le \sum_{k=n}^{m-1} |x_{k+1} - x_k| \le \sum_{k=n}^{m-1} \alpha^{k-1} \cdot |x_2 - x_1| \le \sum_{k=n}^{\infty} \alpha^{k-1} \cdot |x_2 - x_1|.$$

- **9.** The subsequence is convergent and thus bounded. Let M be an upper bound for the subsequence and show that M is actually an upper bound for the whole sequence.
- 10. Consider two real numbers x < y and pick a rational number z such that x < z < y. Then $w_n = z + \frac{1}{n}\sqrt{2}$ is irrational for any $n \in \mathbb{N}$, while $w_n < y$ for large enough n.
- 11. Use the result of Problem 4. If U is a nonempty open subset of \mathbb{R} , then U contains an element y and y = f(x) for some $x \in \mathbb{R}$ by surjectivity. Then $f^{-1}(U)$ is a nonempty open subset of \mathbb{R} by continuity. Use this fact to conclude that U intersects f(A).
- 12. The difference h(x) = f(x) g(x) is continuous and it satisfies h(x) = 0 for all $x \in A$. Suppose $h(x_0) > 0$ for some $x_0 \in \mathbb{R}$. Then $U = (0, 2h(x_0))$ is open and $h^{-1}(U)$ is a neighbourhood of x_0 that does not intersect A. The case $h(x_0) < 0$ is similar.

Practice problems

- **1.** Show that a set $A \subseteq \mathbb{R}$ is connected if and only if there is no function $f: A \to \{0, 1\}$ which is both continuous and surjective.
- **2.** Suppose that $A \subseteq \mathbb{R}$ is connected and $f: A \to \mathbb{R}$ is continuous with $f(x) \neq 1$ for all $x \in A$. Show that either f(x) > 1 for all $x \in A$ or else f(x) < 1 for all $x \in A$.
- 3. Show that the union of two countable sets is countable.
- **4.** Show that the set A consisting of all subsets of \mathbb{N} is uncountable.
- 5. Is the set $A = \{x \in \mathbb{R} : x^4 12x^2 + 16x \le 0\}$ complete? Is it connected?
- **6.** Suppose that the sets $A, B \subseteq \mathbb{R}$ are nonempty, disjoint and open in \mathbb{R} . If there is a connected set U such that $U \subseteq A \cup B$, show that either $U \subseteq A$ or else $U \subseteq B$.
- 7. Consider two functions $f: A \to B$ and $g: B \to C$. If f, g are both surjective, then show that $g \circ f$ is surjective. If $g \circ f$ is surjective, then show that g is surjective.
- 8. Find a bijective function $f: (0,1] \to (0,1] \cup (2,3]$. Is such a function continuous?
- **9.** Find a bijective function $f: A \to A \{x_0\}$ when A is an infinite set and $x_0 \in A$.
- 10. Show that every subset of a countable set is countable.
- **11.** Suppose A is a countable set. Show that there is no surjective map $f: A \to (0, 1)$.
- **12.** A set $A \subseteq \mathbb{R}$ is called path connected if, given any two points $x, y \in A$, there exists a continuous function $f: [0,1] \to A$ such that f(0) = x and f(1) = y. Show that every path connected subset of \mathbb{R} is connected.

Answers and hints

- 1. Show that $\{0\}, \{1\}$ are both open in $\{0, 1\}$. If such a function exists, then the inverse images of these sets are open in A and their union is equal to A.
- 2. Note that A can be expressed as the union of the sets

$$A_1 = \{ x \in A : f(x) < 1 \}, \qquad A_2 = \{ x \in A : f(x) > 1 \}.$$

These sets are disjoint, they are both open in A and their union is equal to A.

- **3.** Suppose A, B are countable. Then there exist surjections $f \colon \mathbb{N} \to A$ and $g \colon \mathbb{N} \to B$. To obtain a surjection $h \colon \mathbb{N} \to A \cup B$, one may associate the even integers with the elements of A and the odd integers with the elements of B.
- **4.** Use Cantor's diagonal argument. Suppose A is countable and A_1, A_2, A_3, \ldots are the only subsets of N. Construct another subset by changing one element in each A_n .
- 5. Start by showing that $A = [-4, 0] \cup \{2\}$. This set is complete but not connected.
- **6.** Consider the sets $U \cap A$ and $U \cap B$. These are disjoint and open in U, while their union is equal to U. Since U is connected, either $U \cap A$ or $U \cap B$ must be empty.
- 7. Let $c \in C$ be given. If the functions f, g are surjective, then there exists $b \in B$ such that g(b) = c and there also exists $a \in A$ such that f(a) = b. If $g \circ f$ is surjective, on the other hand, then there exists $a \in A$ such that g(f(a)) = c.
- 8. Since (0, 1] is connected and its image is not, the function f is not continuous. Look for a piecewise linear function which maps (0, 1/2] to (0, 1] and (1/2, 1] to (2, 3].
- **9.** Since the set A is infinite, it contains a sequence $\{x_n\}$ of distinct elements. Define f so that x_0, x_1, x_2, \ldots map to x_1, x_2, x_3, \ldots and all other points are fixed.
- **10.** Suppose A is countable and $B \subseteq A$. Then there exists an injective map $g: A \to \mathbb{N}$ and this gives a bijective map $g: B \to g(B)$. Use the fact that g(B) is a subset of \mathbb{N} .
- **11.** Since A is countable, there is a surjective map $g: \mathbb{N} \to A$. Were $f: A \to (0, 1)$ also surjective, $f \circ g: \mathbb{N} \to (0, 1)$ would be surjective and (0, 1) would be countable.
- 12. Suppose that $A = A_1 \cup A_2$ for some nonempty disjoint sets A_1, A_2 which are open in A. Let $x \in A_1$ and $y \in A_2$. Then there exists a continuous function $f: [0, 1] \to A$ such that f(0) = x and f(1) = y. Consider the inverse images $f^{-1}(A_1)$ and $f^{-1}(A_2)$.

Practice problems

- **1.** Show that the set A consisting of all functions $f: \{0, 1\} \to \mathbb{N}$ is countable.
- **2.** Show that the set B consisting of all functions $f \colon \mathbb{N} \to \{0, 1\}$ is uncountable.
- **3.** Show that the union of two compact subsets of \mathbb{R} is compact.
- **4.** Are the following subsets of \mathbb{R} compact? Why or why not?

$$A = \{ x \in \mathbb{R} : x^4 - 2x^2 - 8 \le 0 \}, \qquad B = \{ x \in \mathbb{R} : x + \sin x \ge 0 \}.$$

- **5.** Let $\{x_n\}$ be a sequence of real numbers such that x_n converges to x as $n \to \infty$ and consider the set $A = \{x, x_1, x_2, x_3, \ldots\}$. Show that A is a compact subset of \mathbb{R} .
- 6. Show that none of the following sets are compact.

$$A = (0, \infty),$$
 $B = (1, 3),$ $C = \{x \in \mathbb{R} : x^2 \ge x\},$ $D = \{1/n : n \in \mathbb{N}\}.$

7. Show that there exists no continuous surjective function $f: [0,1] \to A$ when

$$A = [0, 1] \cup [2, 3],$$
 $A = [0, 1),$ $A = \mathbb{Q} \cap [0, 1],$ $A = (0, \infty).$

- 8. Find a bijective function $f: [0,1] \to [0,1)$. Is such a function continuous?
- **9.** Show that every open subset of \mathbb{R} can be written as the union of open intervals (r, s) whose endpoints r, s are rational numbers with r < s.
- **10.** Show that a set $A \subseteq \mathbb{Z}$ is compact if and only if it is finite.
- **11.** Suppose that $A \subseteq \mathbb{R}$ is nonempty and compact. Show that max A exists.
- **12.** Suppose that $A \subseteq \mathbb{R}$ is compact and $f: A \to A$ is continuous with

$$|f(x) - f(y)| < |x - y| \quad \text{for all } x \neq y.$$

Show that there exists a point $x_0 \in A$ such that $f(x_0) = x_0$.

Answers and hints

- **1.** Such a function is uniquely determined by its values f(0) and f(1). One may thus associate each element of A with a pair (f(0), f(1)) of natural numbers. Use this fact to obtain a bijection $g: A \to \mathbb{N} \times \mathbb{N}$ and then recall that $\mathbb{N} \times \mathbb{N}$ is countable.
- **2.** Use Cantor's diagonal argument. Suppose that *B* is countable and f_1, f_2, \ldots are the only functions $f \colon \mathbb{N} \to \{0, 1\}$. Construct another function which is not in this list.
- **3.** Suppose that A, B are compact subsets of \mathbb{R} . If some sets U_i form an open cover of their union $A \cup B$, then the sets U_i must cover both A and B.
- 4. Since $x^4 2x^2 8 = (x^2 4)(x^2 + 2)$, the first set is A = [-2, 2] and this is compact. On the other hand, the second set is unbounded, so it is not compact.
- 5. Suppose that the sets U_i form an open cover of A. Then one of these sets, say U_{i_0} , must contain x. It follows by Theorem 3.9(c) that U_{i_0} contains x_N, x_{N+1}, \ldots for some natural number N. Thus, only finitely many terms are not contained in U_{i_0} .
- 6. The sets A, C are not compact because they are not bounded. To show that B is not compact, consider the function $f: B \to \mathbb{R}$ defined by f(x) = 1/(x-1). Since this is continuous, but not bounded, B is not compact. A similar argument applies for D.
- 7. Suppose that such a function exists. Since [0, 1] is both connected and compact, its image A must be both connected and compact. Examine the four possibilities.
- 8. Since [0,1] is compact and its image [0,1) is not, the function f is not continuous. To find a specific bijection $f: [0,1] \to [0,1)$, one may consider the function

$$f(x) = \left\{ \begin{array}{cc} 1/(n+1) & \text{if } x = 1/n \text{ for some } n \in \mathbb{N} \\ x & \text{otherwise} \end{array} \right\}.$$

This function is meant to map $1, \frac{1}{2}, \frac{1}{3}, \ldots$ to $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ keeping all other points fixed.

- **9.** We used a similar argument in the proof of Theorem 3.4(b). Given any point $x \in A$, there exists some $\varepsilon_x > 0$ such that $(x \varepsilon_x, x + \varepsilon_x) \subseteq A$. To replace the endpoints by rational numbers, pick some rational numbers $x \varepsilon_x < r_x < x$ and $x < s_x < x + \varepsilon_x$.
- **10.** Finite sets are certainly compact. Suppose now that $A \subseteq \mathbb{Z}$ is compact. Then A is bounded, so $A \subseteq [-N, N]$ for some $N \in \mathbb{N}$ and this gives $A \subseteq \{0, \pm 1, \ldots, \pm N\}$.
- 11. The inclusion map $i: A \to \mathbb{R}$ is continuous and it attains a maximum value.
- 12. Consider the function $g: A \to \mathbb{R}$ defined by g(x) = |f(x) x|. Since g is continuous and A is compact, g attains a minimum value $g(x_0)$. If $g(x_0) = 0$, then $f(x_0) = x_0$ and the result follows. Otherwise, $g(x_0) > 0$ and $f(x_0) \neq x_0$. Use this fact and the given inequality to obtain a contradiction.

Practice problems

- **1.** Suppose $A \subseteq \mathbb{R}$ is bounded. Show that its closure \overline{A} is compact.
- **2.** Suppose $A \subseteq \mathbb{R}$ is compact and $B \subseteq A$ is closed in A. Show that B is compact.
- **3.** Are the following subsets of \mathbb{R} compact? Why or why not?

$$A = \{ x \in \mathbb{R} : \sin x + \cos x \le 1 \}, \qquad B = \{ x \in \mathbb{R} : x^2 + \sin x \le 1 \}.$$

- **4.** Suppose $A \subseteq \mathbb{R}$ is nonempty and $f: A \to \mathbb{R}$ is continuous. If the set A is bounded, must f(A) be bounded? If the set A is closed, must f(A) be closed?
- **5.** Suppose $A \subseteq \mathbb{R}$ is compact. Show that every infinite subset of A has a limit point.
- **6.** What can you say about a set $A \subseteq \mathbb{R}$, if every subset of A is compact?
- 7. Show that the function $f: [0, a] \to \mathbb{R}$ is integrable for any a > 0 when $f(x) = x^2$.
- 8. Show that the function $f: [0,1] \to \mathbb{R}$ is integrable for any $a, b \in \mathbb{R}$ when

$$f(x) = \left\{ \begin{array}{ll} a & \text{if } x \neq 0 \\ b & \text{if } x = 0 \end{array} \right\}.$$

- **9.** Suppose that $f: [0,1] \to \mathbb{R}$ is integrable and let a > 0. If the function $g: [0,a] \to \mathbb{R}$ is defined by g(x) = f(x/a), show that g is integrable and $\int_0^a g(x) \, dx = a \int_0^1 f(x) \, dx$.
- **10.** Suppose $f: [0,1] \to [0,\infty)$ is integrable with f(x) = 0 for all $x \in \mathbb{Q}$. Show that

$$\int_0^1 f(x) \, dx = 0.$$

11. Let a < b. Find a function $f: [a, b] \to \mathbb{R}$ such that f^2 is integrable, but f is not.

12. Let a < b and suppose $f: [a, b] \to \mathbb{R}$ is increasing. Show that f is integrable on [a, b].

- **1.** Use the Heine-Borel theorem. First, \overline{A} is closed by definition. Since A is bounded by assumption, one has $A \subseteq [-N, N]$ for some N > 0. This implies that $\overline{A} \subseteq [-N, N]$.
- **2.** Use the Heine-Borel theorem. Since $B \subseteq A$ and A is bounded, B is bounded as well. Since B is closed in A, one has $B = A \cap C$ for some set C which is closed in \mathbb{R} .
- **3.** Since A contains $n\pi$ for each integer $n \in \mathbb{N}$, it is neither bounded nor compact. To show that B is compact, one must check that B is bounded and closed in \mathbb{R} .
- 4. For the first part, let A = (0, 1) and f(x) = 1/x. The second part is a bit tricky. If you consider a set A that is both bounded and closed, then A is compact, so f(A) is compact and f(A) is closed. However, this is not true for unbounded closed sets such as $A = [1, \infty)$. If we let f(x) = 1/x as before, then f(A) = (0, 1] is not closed.
- 5. Suppose that $B \subseteq A$ is infinite and B has no limit points. Then every element $x \in A$ has a neighbourhood U_x which does not intersect B at a point other than x. Use the fact that the neighbourhoods U_x form an open cover of A to conclude that B is finite.
- 6. Finite sets have this property because finite sets are compact and their subsets are finite. Suppose that $A \subseteq \mathbb{R}$ is infinite and compact. Then A contains a sequence $\{x_n\}$ of distinct points. Since this sequence is bounded, it has a convergent subsequence. Denote the limit by x and consider the set $A \{x\}$. Can this set be compact?
- 7. Consider a partition $P = \{x_0, x_1, \ldots, x_n\}$ of equally spaced points. Then $x_k = ak/n$ for each k and one may check that $U(f, P) L(f, P) \leq 2a^3/n$.
- 8. Consider the partition $P_n = \{0, \frac{1}{n}, 1\}$ for any integer $n \ge 2$. Try to show that

$$U(f, P_n) - L(f, P_n) = \frac{\max\{a, b\}}{n} - \frac{\min\{a, b\}}{n}.$$

- **9.** One may easily relate a partition P of [0, a] to a partition Q of [0, 1]. Use this fact to find a relation between the corresponding lower and upper Darboux sums.
- 10. Consider any partition $P = \{x_0, x_1, \ldots, x_n\}$ of [0, 1]. Since f(x) is non-negative and it is equal to zero at all rational numbers, one has L(f, P) = 0 and thus $\mathcal{L}(f) = 0$.
- **11.** Define f(x) = 1 for all $x \in \mathbb{Q}$ and f(x) = -1 for all $x \notin \mathbb{Q}$. Example 10.6 is similar.
- 12. Use the Riemann integrability condition. If the partition $P = \{x_0, x_1, \ldots, x_n\}$ consists of equally spaced points, then $m_k = f(x_k)$ and $M_k = f(x_{k+1})$ for each k, so

$$U(f,P) - L(f,P) = \sum_{k=0}^{n-1} (M_k - m_k)(x_{k+1} - x_k) = (f(b) - f(a)) \cdot \frac{b-a}{n}$$

Practice problems

1. Suppose that $f: [a, b] \to \mathbb{R}$ is integrable and let I be a real number such that

$$L(f,P) \le I \le U(f,P)$$

for all partitions P of [a, b]. Show that I must be equal to $I = \int_a^b f(x) dx$.

- **2.** Suppose f is integrable on the interval [a, b] and let a < c < b. Show that f is also integrable on the subintervals [a, c] and [c, b].
- **3.** Suppose $f: [a, b] \to \mathbb{R}$ is a bounded function which is zero at all points except for one point. Show that f is integrable on [a, b] and $\int_a^b f(x) dx = 0$.
- **4.** Suppose $f: [a, b] \to \mathbb{R}$ is bounded and $g: [a, b] \to \mathbb{R}$ is integrable. If f(x) = g(x) at all points except for finitely many points, show that f is integrable on [a, b].
- 5. Find two bounded functions $f, g: [a, b] \to \mathbb{R}$ such that f(x) = g(x) at all points except for countably many points and g is integrable on [a, b], while f is not.
- **6.** Show that the function $f: [0, 2\pi] \to \mathbb{R}$ is integrable when

$$f(x) = \left\{ \begin{array}{ll} \sin x & \text{if } 0 \le x \le \pi \\ \cos x & \text{if } \pi < x \le 2\pi \end{array} \right\}.$$

7. Suppose $f: [a, b] \to \mathbb{R}$ is continuous. Show that there exists some $c \in [a, b]$ such that

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

8. Suppose $f: [a, b] \to \mathbb{R}$ is continuous and $g: [a, b] \to \mathbb{R}$ is a non-negative, integrable function. Show that there exists some $c \in [a, b]$ such that

$$\int_{a}^{b} f(x)g(x) \, dx = f(c) \int_{a}^{b} g(x) \, dx$$

- **9.** Given a continuous function $f: [a, b] \to \mathbb{R}$, show that $\left| \int_a^b f(x) \, dx \right| \le \int_a^b |f(x)| \, dx$.
- **10.** Suppose $f: [a, b] \to \mathbb{R}$ is continuous and let $F(z) = \int_a^z f(x) dx$ for each $z \in [a, b]$. Show that the function F is continuous as well.
- **11.** Suppose $f: [a, b] \to \mathbb{R}$ is bounded and integrable. Show that f^2 is integrable.
- **12.** Suppose $f, g: [a, b] \to \mathbb{R}$ are bounded and integrable. Show that fg is integrable.

Answers and hints

- 1. Note that I is an upper bound for the lower Darboux sums, while the integral is the least upper bound. This gives $I \ge \int_a^b f(x) dx$ and one similarly has $I \le \int_a^b f(x) dx$.
- **2.** Let $\varepsilon > 0$ be given. Since f is integrable on [a, b], there exists a partition P such that $U(f, P) L(f, P) < \varepsilon$. Note that $Q = P \cup \{c\}$ also satisfies $U(f, Q) L(f, Q) < \varepsilon$ and that Q can be decomposed into a partition Q_1 of [a, c] and a partition Q_2 of [c, b].
- **3.** Assume f(c) > 0 and f(x) = 0 for all $x \neq c$. If the partition $P = \{x_0, x_1, \ldots, x_n\}$ consists of equally spaced points, then U(f, P) L(f, P) = f(c)(b-a)/n.
- 4. Use the previous problem. If f, g only differ at one point, then f g is integrable by the previous problem, so f = (f g) + g is integrable as well.
- **5.** Consider the function f defined by f(x) = 1 for all $x \in \mathbb{Q}$ and f(x) = 0 for all $x \notin \mathbb{Q}$. This is not integrable on [a, b], but g(x) = 0 is constant and thus integrable on [a, b].
- 6. Use Theorem 11.1 to show that f is integrable on $[0, \pi]$ and use Problem 4 to show that f is integrable on $[\pi, 2\pi]$. This implies integrability on $[0, 2\pi]$.
- 7. Since f is continuous, it attains a minimum value m and a maximum value M. Show that $m \leq \frac{1}{b-a} \int_a^b f(x) dx \leq M$ and then use the intermediate value theorem.
- 8. Since f is continuous, it attains a minimum value m and a maximum value M. Show that $m \int_a^b g(x) dx \leq \int_a^b f(x)g(x) dx \leq M \int_a^b g(x) dx$ and consider two cases.
- **9.** The left hand side is $\pm \int_a^b f(x) dx$ and this is equal to $\int_a^b (\pm f(x)) dx$. The right hand side is $\int_a^b |f(x)| dx$. Use Theorem 11.5 to compare these expressions.
- 10. Let $\varepsilon > 0$ be given. To prove continuity, one needs to find some $\delta > 0$ such that

$$|y-z| < \delta \implies |F(y) - F(z)| < \varepsilon.$$

When $y \ge z$, one has $|F(y) - F(z)| = \left|\int_{z}^{y} f(x) dx\right|$ and the previous problem becomes relevant; the case $y \le z$ is similar. Use the fact that $|f(x)| \le M$ for some M > 0.

11. Suppose that $|f(x)| \leq M$ for some M > 0. Given any partition P, try to show that

$$U(f^2, P) - L(f^2, P) \le 2M \cdot [U(f, P) - L(f, P)].$$

Since the right hand side is arbitrarily small, the same is true for the left hand side.

12. This follows easily from the previous problem because $4fg = (f+g)^2 - (f-g)^2$.