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• We use capital letters to denote sets and lowercase letters to denote their elements.

• We write A ⊆ B whenever every element of A is also an element of B.

• The union A ∪ B of two sets consists of the elements x with x ∈ A or x ∈ B.

• The intersection A ∩B of two sets consists of the elements x with x ∈ A and x ∈ B.

• The difference A− B of two sets consists of the elements x with x ∈ A, but x /∈ B.

Theorem 1.1 – De Morgan’s laws

The difference of a union/intersection is the intersection/union of the differences, namely

A− (B ∪ C) = (A−B) ∩ (A− C), A− (B ∩ C) = (A−B) ∪ (A− C).

Proof. To prove the statement about the difference of a union, one argues that

x ∈ A− (B ∪ C) ⇐⇒ x ∈ A, but x /∈ B ∪ C

⇐⇒ x ∈ A, but x /∈ B and x /∈ C

⇐⇒ x ∈ A−B and x ∈ A− C

⇐⇒ x ∈ (A−B) ∩ (A− C).

Since the difference of an intersection can be treated similarly, we omit the details. �

Definition 1.2 – Image of a set

Given a function f : A → B and a set A1 ⊆ A, we define f(A1) = {f(x) : x ∈ A1}.

Theorem 1.3 – Properties of images

Let f : A → B be a function and let A1, A2 ⊆ A be arbitrary.

(a) If A1 ⊆ A2, then f(A1) ⊆ f(A2).

(b) One has f(A1 ∪ A2) = f(A1) ∪ f(A2).

(c) One has f(A1 ∩ A2) ⊆ f(A1) ∩ f(A2) and equality holds when f is injective.

(d) One has f(A1 − A2) ⊇ f(A1)− f(A2) and equality holds when f is injective.

• Thus, images preserve inclusions and unions, but not intersections and differences.
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Proof. To prove the first part, suppose that A1 ⊆ A2. We then have

y ∈ f(A1) =⇒ y = f(x) for some x ∈ A1

=⇒ y = f(x) for some x ∈ A2

=⇒ y ∈ f(A2).

This implies that f(A1) ⊆ f(A2), as needed. To prove the second part, we note that

y ∈ f(A1 ∪ A2) ⇐⇒ y = f(x) for some x ∈ A1 ∪ A2

⇐⇒ y = f(x) for some x ∈ A1 or some x ∈ A2

⇐⇒ y ∈ f(A1) or y ∈ f(A2)

⇐⇒ y ∈ f(A1) ∪ f(A2).

Next, we turn to the third part. To prove the inclusion, one argues that

y ∈ f(A1 ∩ A2) =⇒ y = f(x) for some x ∈ A1 ∩ A2

=⇒ y = f(x) with x ∈ A1 and x ∈ A2

=⇒ y ∈ f(A1) and y ∈ f(A2)

=⇒ y ∈ f(A1) ∩ f(A2).

This shows that f(A1 ∩ A2) ⊆ f(A1) ∩ f(A2), as needed. If it happens that f is injective,
then we can also establish the opposite inclusion. In that case, one has

y ∈ f(A1) ∩ f(A2) =⇒ y = f(x1) for some x1 ∈ A1 and y = f(x2) for some x2 ∈ A2

=⇒ y = f(x1) = f(x2) with x1 ∈ A1 and x2 ∈ A2

=⇒ y = f(x1) = f(x2) with x1 = x2 ∈ A1 ∩ A2 (by injectivity)

=⇒ y ∈ f(A1 ∩ A2).

This completes the proof of the third part. The proof of the last part is quite similar. �

Example 1.4 Consider the case f(x) = x2. If we take A1 = [−1, 0] and A2 = [0, 1], then

A1 ∩ A2 = {0}, f(A1 ∩ A2) = {0}, f(A1) = [0, 1] = f(A2).

In particular, f(A1 ∩ A2) = {0} is a proper subset of f(A1) ∩ f(A2) = [0, 1]. Similarly,

A1 − A2 = [−1, 0), f(A1 − A2) = (0, 1], f(A1)− f(A2) = ∅

and so f(A1)− f(A2) could be a proper subset of f(A1 − A2) when f is not injective. �

Definition 1.5 – Inverse image of a set

Given a function f : A → B and a set B1 ⊆ B, we define its inverse image by

f−1(B1) = {x ∈ A : f(x) ∈ B1}.

This set is defined for any function f . In particular, f does not need to be bijective.
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Example 1.6 Consider the case f(x) = x2. The inverse image of B1 = [−2,−1] is then

f−1(B1) = {x ∈ R : x2 ∈ B1} = {x ∈ R : −2 ≤ x2 ≤ −1} = ∅.

On the other hand, the inverse image of B2 = [1, 4] can be computed as

f−1(B2) = {x ∈ R : x2 ∈ B2} = {x ∈ R : 1 ≤ x2 ≤ 4} = [1, 2] ∪ [−2,−1]. �

Theorem 1.7 – Properties of inverse images

Let f : A → B be a function and let B1, B2 ⊆ B be arbitrary.

(a) If B1 ⊆ B2, then f−1(B1) ⊆ f−1(B2).

(b) One has f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2).

(c) One has f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2).

(d) One has f−1(B1 −B2) = f−1(B1)− f−1(B2).

• Thus, inverse images preserve inclusions, unions, intersections and also differences.

Proof. To prove the first part, we assume that B1 ⊆ B2 and we note that

x ∈ f−1(B1) =⇒ f(x) ∈ B1 =⇒ f(x) ∈ B2 =⇒ x ∈ f−1(B2).

This implies that f−1(B1) ⊆ f−1(B2), as needed. For the second part, one has

x ∈ f−1(B1 ∪ B2) ⇐⇒ f(x) ∈ B1 ∪B2

⇐⇒ f(x) ∈ B1 or f(x) ∈ B2

⇐⇒ x ∈ f−1(B1) or x ∈ f−1(B2)

⇐⇒ x ∈ f−1(B1) ∪ f−1(B2).

This proves the statement in the second part, while the other two parts are similar. �

Theorem 1.8 – Images and inverse images

Let f : A → B be a function. Let A1 ⊆ A and B1 ⊆ B be arbitrary.

(a) One has f−1(f(A1)) ⊇ A1 and equality holds whenever f is injective.

(b) One has f(f−1(B1)) ⊆ B1 and equality holds whenever f is surjective.

Proof. We only establish part (b), as part (a) is similar. First of all, we note that

y ∈ f(f−1(B1)) =⇒ y = f(x) for some x ∈ f−1(B1)

=⇒ y = f(x) and also f(x) ∈ B1

=⇒ y ∈ B1.



4 Infimum and supremum

This proves the inclusion f(f−1(B1)) ⊆ B1. If we also assume that f is surjective, then

y ∈ B1 =⇒ y = f(x) for some x ∈ A (by surjectivity)

=⇒ y = f(x) for some x ∈ A and f(x) ∈ B1

=⇒ y = f(x) and x ∈ f−1(B1)

=⇒ y ∈ f(f−1(B1)).

Thus, the inclusion B1 ⊆ f(f−1(B1)) also holds and the two sets are actually equal. �

Example 1.9 Consider the case f(x) = x2. If we take A1 = [0, 1] and B1 = [−1, 1], then

f(A1) = [0, 1] =⇒ f−1(f(A1)) = {x ∈ R : 0 ≤ x2 ≤ 1} = [−1, 1].

In particular, A1 is a proper subset of f−1(f(A1)) and one similarly has

f−1(B1) = {x ∈ R : −1 ≤ x2 ≤ 1} = [−1, 1] =⇒ f(f−1(B1)) = [0, 1] 6= B1. �

2 Infimum and supremum

Definition 2.1 – Minimum and maximum

If a set A ⊆ R has a smallest element, then we call that element the minimum of A and
we denote it by minA. If a set A ⊆ R has a largest element, then we call that element
the maximum of A and we denote it by maxA.

Example 2.2 When it comes to the interval A = [1, 2], one has minA = 1 and maxA = 2.
When it comes to the interval B = [1, 2), however, minB = 1 and maxB does not exist. �

Example 2.3 Consider the set A = { 1

n
: n ∈ N} = {1, 1

2
, 1
3
, . . .}. To show that maxA = 1,

one checks that 1 is an element of A and that 1 is at least as large as any other element. In
this case, it is clear that 1 ∈ A, while 1 ≥ x for all x ∈ A because 1 ≥ 1

n
for all n ∈ N. �

Example 2.4 Consider the set A = { 1

n
: n ∈ N} = {1, 1

2
, 1
3
, . . .} as before. To show that A

has no minimum, one checks that A has no smallest element. Given any element of A, we
must thus be able to find another element of A which is smaller. Now, let x ∈ A be given.
Then x = 1

n
for some n ∈ N and y = 1

n+1
is an element of A such that y < x. This shows

that the original element x was not the smallest, so A does not have a minimum. �

Definition 2.5 – Upper bounds and supremum

We say that A ⊆ R is bounded from above, if there exists a number x such that x ≥ a
for all a ∈ A. In that case, we also say that x is an upper bound of A. The least upper
bound of A is called the supremum of A and it is denoted by supA.

• Both the maximum and the supremum of A must be at least as large as all elements
of A. However, maxA must itself be an element of A, whereas supA need not be.
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Axiom of completeness

If A ⊆ R is nonempty and bounded from above, then A has a least upper bound.

Example 2.6 We show that the interval A = (−∞, 1) has no maximum. Indeed, let x ∈ A
be given and note that x < 1. The number y = x+1

2
is the average of x and 1 which is easily

seen to satisfy x < y < 1. This implies that y is an element of A which is larger than the
original element x. Thus, x was not the largest element and A has no maximum. �

Example 2.7 Consider the interval A = (−∞, 1) once again. Upper bounds of A must be
at least as large as every element of A, so the least upper bound should be supA = 1. To
prove this, we check (a) that 1 is an upper bound of A and (b) that 1 is the least upper
bound. The first part is clear, as 1 ≥ a for all a ∈ A. To establish the second part, we need
to show that no number x < 1 is an upper bound of A. Given any x < 1, we must thus be
able to find an element of A which is bigger than x. If we let y = x+1

2
once again, then we

have x < y < 1 and so y is an element of A which is bigger than x, as needed. �

Definition 2.8 – Lower bounds and infimum

We say that A ⊆ R is bounded from below, if there exists a number x such that x ≤ a
for all a ∈ A. In that case, we also say that x is a lower bound of A. The greatest lower
bound of A is called the infimum of A and it is denoted by inf A.

• Both the minimum and the infimum of A must be at least as small as all elements
of A. However, minA must itself be an element of A, whereas inf A need not be.

Example 2.9 It is easy to see that A = (0,∞) has no minimum. Given any element x ∈ A,
one has x > 0 and then y = x

2
satisfies 0 < y < x, so it is an element of A which is smaller

than x. To show that the infimum of A is inf A = 0, one needs to check (a) that 0 is a lower
bound of A and (b) that 0 is the greatest lower bound. The first part is clear, as 0 ≤ a for
all a ∈ A. To establish the second part, we need to show that no number z > 0 is a lower
bound of A. Given any z > 0, we must thus be able to find an element of A which is smaller
than z. In fact, y = z

2
is such an element because 0 < y < z, so y ∈ A and also y < z. �

Theorem 2.10 – Relation between inf/min and sup/max

Suppose that A is a nonempty subset of R.

(a) If minA exists, then inf A also exists and the two are equal. If inf A exists and it
happens to be an element of A, then minA exists and the two are equal.

(b) If maxA exists, then supA also exists and the two are equal. If supA exists and
it happens to be an element of A, then maxA exists and the two are equal.
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Proof. We only prove the first part, as the second part is similar. If minA exists, then
minA ≤ x for all x ∈ A and so minA is a lower bound of A. To show that it is the greatest
lower bound, suppose y > minA. Then minA is an element of A which is smaller than y,
so y is not a lower bound of A and the greatest lower bound is minA.

Similarly, suppose that inf A exists and that inf A ∈ A. Then inf A ≤ x for all x ∈ A
and inf A is itself an element of A, so inf A is the smallest element of A. �

Theorem 2.11 – Existence of infimum

If A ⊆ R is nonempty and bounded from below, then A has a greatest lower bound.

Proof. We consider the set B = {x ∈ R : −x ∈ A}. This consists of the negatives of the
elements of A, so any lower bound of A should be an upper bound of B and vice versa.

First of all, we show that B is bounded from above. Since A is bounded from below,
there exists a real number z such that z ≤ a for all a ∈ A. This implies that −z ≥ −a for
all a ∈ A, so −z ≥ b for all b ∈ B. We conclude that −z is an upper bound of B.

Since B is bounded from above, supB exists by the axiom of completeness. We now
show that − supB is the greatest lower bound of A. In fact, we have

supB ≥ b for all b ∈ B =⇒ − supB ≤ −b for all b ∈ B

=⇒ − supB ≤ a for all a ∈ A

and this means that − supB is a lower bound of A. To show that it is the greatest one,
suppose z > − supB and note that −z < supB. Then −z is not an upper bound of B, so
there exists some b ∈ B such that −z < b. This gives z > −b, so −b is an element of A
which is smaller than z. In particular, z is not a lower bound of A, as needed. �

Theorem 2.12 – Inf/Sup of a subset

(a) Suppose that A ⊆ R is nonempty and bounded from below. If B ⊆ A, then B is
bounded from below as well and one has inf B ≥ inf A.

(b) Suppose that A ⊆ R is nonempty and bounded from above. If B ⊆ A, then B is
bounded from above as well and one has supB ≤ supA.

• Plainly stated, larger sets must have a larger supremum, but a smaller infimum.

Proof. We only prove the first part, as the second part is similar. Since A has a lower
bound by assumption, its infimum inf A exists and one has

inf A ≤ x for all x ∈ A =⇒ inf A ≤ x for all x ∈ B.

Thus, inf A is a lower bound of B, so B is bounded from below and inf B exists. As inf A is
a lower bound of B and inf B is the greatest lower bound of B, one has inf A ≤ inf B. �
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Theorem 2.13 – Archimedean property

The set N of natural numbers is not bounded from above. Given any real number x,
that is, there exists a natural number n such that n > x.

Proof. To prove the first statement, suppose N is bounded from above and let α = supN
be its least upper bound. Since α − 1 is smaller, it is not an upper bound of N, so there
exists some x ∈ N such that α − 1 < x. This gives x + 1 > α which means that x + 1 is a
natural number that is actually larger than α = supN, a contradiction.

To prove the second statement, suppose n ≤ x for all n ∈ N. Then x is an upper bound
of N and this contradicts the first statement. Thus, there exists n ∈ N such that n > x. �

Example 2.14 Consider the set A =
{

2n+1

n+3
: n ∈ N

}

. To show that supA = 2, we check
that 2 is an upper bound and that it is the least upper bound. The first part is clear, as

2 ≥
2n+ 1

n+ 3
⇐⇒ 2n+ 6 ≥ 2n+ 1 ⇐⇒ 6 ≥ 1.

To check the second part, suppose that x < 2. We need to find an element of A which is
larger than x and this amounts to ensuring that 2n+1

n+3
> x. On the other hand, one has

2n+ 1

n+ 3
> x ⇐⇒ 2n+ 1 > nx+ 3x

⇐⇒ (2− x)n > 3x− 1 ⇐⇒ n >
3x− 1

2− x
.

Pick a natural number n that satisfies the rightmost inequality. Then 2n+1

n+3
> x, so there is

an element of A which is larger than x. This shows that x is not an upper bound of A. �

Theorem 2.15 – Nonempty subsets of N

Every nonempty subset of N must have a minimum.

Proof. Suppose that A ⊆ N is nonempty. Since x ≥ 1 for all x ∈ A, the set A is then
bounded from below and inf A exists. If we can show that inf A ∈ A, then minA also exists
and the two are equal. Thus, it suffices to show that inf A ∈ A.

Since inf A + 1 > inf A, there exists an element x ∈ A such that inf A ≤ x < inf A + 1.
If it happens that inf A = x, then inf A ∈ A and the proof is complete. Otherwise, we must
have inf A < x and we may proceed as before to find some element y ∈ A such that

inf A ≤ y < x =⇒ inf A ≤ y < x < inf A+ 1.

This is impossible because two integers x, y cannot lie in an interval of length 1. �
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Theorem 2.16 – Principle of mathematical induction

Consider a statement P (n) involving the natural numbers n ∈ N. Suppose that P (1)
holds and that P (n) implies P (n+ 1) for each n ∈ N. Then P (n) holds for all n ∈ N.

Proof. We study the set A = {n ∈ N : P (n) does not hold}. If we show that A is empty,
then P (n) holds for all n ∈ N and the result follows. Suppose then that A is nonempty.
According to the previous theorem, it must have a least element m = minA.

Since P (1) holds by assumption, 1 /∈ A and so m > 1. In particular, m− 1 is a natural
number which is smaller than the least element of A, so m− 1 /∈ A and P (m− 1) holds. It
follows by assumption that P (m) also holds and this gives m /∈ A, a contradiction. �

3 Open sets and convergence

Definition 3.1 – Open set

We say that a set A ⊆ R is open in R if, given any point x ∈ A, there exists some ε > 0
such that (x− ε, x+ ε) ⊆ A.

Example 3.2 Consider the interval A = [a, b) which contains its endpoint x = a. If A was
actually open in R, then we would have (a − ε, a + ε) ⊆ A for some ε > 0. This is not the
case, however, because points such as a+ ε

2
lie in (a− ε, a+ ε) but not in A. �

Theorem 3.3 – Unions and intersections of open sets

Every union of open sets is open and every finite intersection of open sets is open.

• Infinite intersections of open sets need not be open. For instance, Un =
(

− 1

n
, 1

n

)

is
open in R for each n ∈ N, but one has

⋂

∞

n=1
Un = {0} and this is not open in R.

Proof. Let us worry about unions first. We assume that the sets Ui are open in R and we
look at their union A =

⋃

i Ui. To show that A is open in R, let x ∈ A be given. Since x
belongs to the union of the sets Ui, we have x ∈ Ui for some i. We can thus find some ε > 0
such that (x− ε, x+ ε) ⊆ Ui and this implies that (x− ε, x+ ε) ⊆

⋃

i Ui = A.
Next, we prove the statement for intersections. Assume that the sets Ui are open in R

and let B =
⋂n

i=1
Ui. To show that B is open in R, let x ∈ B be given. Then x ∈ Ui for

each i and there exist ε1, ε2, . . . , εn > 0 such that (x− εi, x+ εi) ⊆ Ui for each i. If we now
take ε > 0 to be the smallest of the numbers εi, then ε ≤ εi for each i and so

(x− ε, x+ ε) ⊆ (x− εi, x+ εi) ⊆ Ui

for each i. It easily follows that (x− ε, x+ ε) ⊆
⋂n

i=1
Ui = B, as needed. �
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Theorem 3.4 – Examples of open sets

(a) The intervals (a,∞), (−∞, b) and (a, b) are open in R for all a, b.

(b) A set A ⊆ R is open in R if and only if it is a union of open intervals.

Proof. First, consider the interval A = (a,∞). Given a point x ∈ A, we have x > a and we
need to find some ε > 0 such that (x− ε, x+ ε) ⊆ A. Letting ε = x− a, we get

y ∈ (x− ε, x+ ε) =⇒ y > x− ε = a =⇒ y ∈ A.

This shows that A = (a,∞) is open in R. A similar argument shows that B = (−∞, b) is
also open in R, so their intersection A ∩ B = (a, b) is open in R as well.

Let us now turn to part (b). If a set is a union of open intervals, then it is a union of
open sets, so it is open. Conversely, suppose A ⊆ R is open. Given any x ∈ A, we can find
some εx > 0 such that (x− εx, x+ εx) ⊆ A. Since A is the union of its elements, we get

A =
⋃

x∈A

{x} ⊆
⋃

x∈A

(x− εx, x+ εx) ⊆ A.

Thus, the above sets are all equal and A itself is a union of open intervals. �

Example 3.5 Consider the set A = {x ∈ R : x3 > x}. To show that A is open in R, we
first find the values of x such that x3 > x. Note that x3 − x can be factored as

x3 − x = x(x2 − 1) = x(x− 1)(x+ 1).

When x < −1, all three factors are negative, so the product is negative. When −1 < x < 0,
only two factors are negative, so the product is positive. Arguing in this manner, one finds
that A = (−1, 0) ∪ (1,∞). Thus, A is open in R by the previous theorem. �

Definition 3.6 – Convergence of sequences

A sequence {xn} of real numbers converges to x as n → ∞ if, given any ε > 0, there
exists a natural number N such that xn ∈ (x− ε, x+ ε) for all n ≥ N . In that case, we
call x the limit of the sequence and we write xn → x as n → ∞.

Theorem 3.7 – Monotone convergence theorem

(a) If a sequence {xn} is increasing and bounded from above, then {xn} converges.

(b) If a sequence {xn} is decreasing and bounded from below, then {xn} converges.

Proof. We only prove the first part, as the second part is similar. Our goal is to show that
the sequence converges to supA, where A = {x1, x2, . . .}. Let ε > 0 be given. As supA− ε
is smaller than the least upper bound of A, there exists xN ∈ A such that xN > supA− ε.
Since the sequence is increasing, this actually gives xn ≥ xN > supA− ε for all n ≥ N . On
the other hand, supA is an upper bound of A, so supA ≥ xn for all n. We thus have

supA− ε < xN ≤ xn ≤ supA < supA+ ε

for all n ≥ N . In other words, xn ∈ (supA− ε, supA+ ε) for all n ≥ N , as needed. �
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Theorem 3.8 – Squeeze theorem

If xn ≤ yn ≤ zn for all n ∈ N and xn, zn → α as n → ∞, then yn → α as n → ∞.

Proof. Let ε > 0 be given. Since xn → α as n → ∞, there exists a natural number N1 such
that xn ∈ (α− ε, α+ ε) for all n ≥ N1. Since zn → α as n → ∞, there also exists a natural
number N2 such that zn ∈ (α− ε, α + ε) for all n ≥ N2. We must thus have

α− ε < xn, zn < α + ε

for all n ≥ max{N1, N2}. Since xn ≤ yn ≤ zn by assumption, this implies that

α− ε < xn ≤ yn ≤ zn < α + ε

for all n ≥ max{N1, N2}. In other words, it implies that yn → α as n → ∞. �

Theorem 3.9 – Convergence in terms of open intervals/sets

The following statements are equivalent whenever {xn} is a sequence and x ∈ R.

(a) One has xn → x as n → ∞.

(b) Given any ε > 0, there exists N ∈ N such that xn ∈ (x− ε, x+ ε) for all n ≥ N .

(c) Given any open U with x ∈ U , there exists N ∈ N such that xn ∈ U for all n ≥ N .

Proof. The first two parts are equivalent by definition.
To show that (b) implies (c), suppose U is open and x ∈ U . Then (x− ε, x+ ε) ⊆ U for

some ε > 0 and one may use part (b) to find some N ∈ N such that xn ∈ (x− ε, x + ε) for
all n ≥ N . This implies that xn ∈ (x− ε, x+ ε) ⊆ U for all n ≥ N , so part (c) follows.

To prove that (c) implies (b), let ε > 0 be given and take U = (x− ε, x+ ε). Then U is
an open set that contains x, so one may use part (c) to find some N ∈ N such that xn ∈ U
for all n ≥ N . This gives xn ∈ (x− ε, x+ ε) for all n ≥ N , so part (b) follows. �

4 Closure and interior

Definition 4.1 – Closed set

We say that a set A ⊆ R is closed in R, if its complement Ac = R− A is open in R.

• Remark. When it comes to sets, being closed is not the opposite of being open.

Example 4.2 The interval A = (−∞, b) is open in R, so its complement Ac = [b,∞) is
closed in R. Similarly, B = (a,∞) is open in R and so Bc = (−∞, a] is closed in R. �
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Theorem 4.3 – Unions and intersections of closed sets

Every intersection of closed sets is closed and every finite union of closed sets is closed.

Proof. We only prove the statement about intersections, as the statement about unions is
similar. Suppose that the sets Ui are closed in R and let A =

⋂

i Ui. To show that A is also
closed, we need to show that its complement is open. Using De Morgan’s laws, we get

Ac = R− A = R−
⋂

i

Ui =
⋃

i

(R− Ui) =
⋃

i

U c
i .

Since each Ui is closed by assumption, each complement U c
i is open. This makes Ac a union

of open sets, so Ac is itself open and its complement A is closed. �

Example 4.4 If a set A = {x} consists of a single element, then A is closed in R because
its complement Ac = (−∞, x) ∪ (x,∞) is a union of open intervals and thus open. �

Example 4.5 If a set A ⊆ R consists of finitely many elements, then A can be expressed
as the finite union of its elements {x}, so it easily follows that A is closed. �

Theorem 4.6 – Closed sets and convergence

Suppose that A ⊆ R is closed in R and let {xn} be a sequence of elements of A which
converges to the point x as n → ∞. Then the limit x must also be an element of A.

Proof. Suppose that x /∈ A. Then x ∈ Ac, while Ac is open because A is closed. Thus,
there exists some ε > 0 such that (x − ε, x + ε) ⊆ Ac. Since xn → x as n → ∞, there also
exists some natural number N such that xn ∈ (x − ε, x + ε) for all n ≥ N . This actually
gives xn ∈ Ac for all n ≥ N and thus xn /∈ A for all n ≥ N , a contradiction. �

Example 4.7 Consider the set A = (0, 1] which is not closed in R. Letting xn = 1/n, one
obtains a sequence of elements of A whose limit x = 0 is not an element of A. �

Theorem 4.8 – Nested interval property

Consider a sequence of closed intervals In = [an, bn] such that In+1 ⊆ In for all n ∈ N.
Then the intersection of the intervals

⋂

∞

n=1
In must be nonempty.

Proof. First of all, we study the behaviour of the left and right endpoints

an = min In = inf In, bn = max In = sup In.

Since In+1 ⊆ In for each n ∈ N, one easily finds that

In+1 ⊆ In =⇒ inf In+1 ≥ inf In =⇒ an+1 ≥ an
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for each n ∈ N. This means that the sequence {an} is increasing, while a similar argument
shows that the sequence {bn} is decreasing. Now, consider the set A = {a1, a2, . . .}. Since

In ⊆ I1 =⇒ [an, bn] ⊆ [a1, b1] =⇒ an ≤ b1

for each n ∈ N, the set A is bounded from above and supA exists. Moreover, one has

am ≤ am+n ≤ bm+n ≤ bn

for all m,n ∈ N since {an} is increasing and {bn} is decreasing. Thus, each bn is an upper
bound of A and we must have supA ≤ bn for all n ∈ N. Since an ≤ supA by definition, this
actually gives an ≤ supA ≤ bn for all n ∈ N and thus supA ∈ In for all n ∈ N. �

Definition 4.9 – Interior and closure

(a) The interior of a set A ⊆ R is the union of all open sets that are contained in A.
It is the largest open set that is contained in A and it is usually denoted by A◦.

(b) The closure of a set A ⊆ R is the intersection of all closed sets that contain A. It
is the smallest closed set that contains A and it is usually denoted by A.

• The following table lists the interiors and closures of some typical sets.

Set Interior Closure

{0, 1} ∅ {0, 1}

[0, 1) (0, 1) [0, 1]

[0, 1] ∪ {2} (0, 1) [0, 1] ∪ {2}

(0, 1) ∪ [2,∞) (0, 1) ∪ (2,∞) [0, 1] ∪ [2,∞)

Theorem 4.10 – Properties of interior and closure

(I1) One has A◦ ⊆ A for each A ⊆ R.

(I2) If A ⊆ B, then A◦ ⊆ B◦.

(I3) A ⊆ R is open if and only if A◦ = A.

(I4) One has (A◦)◦ = A◦ for each A ⊆ R.

(C1) One has A ⊆ A for each A ⊆ R.

(C2) If A ⊆ B, then A ⊆ B.

(C3) A ⊆ R is closed if and only if A = A.

(C4) One has A = A for each A ⊆ R.

Proof. We only prove the statements about the interior, as the ones about the closure are
similar. First of all, A◦ is contained in A by definition, so (I1) is clear. To prove (I2), we
note that A ⊆ B implies A◦ ⊆ A ⊆ B. Since A◦ is an open set which is contained in B,
while B◦ is the largest open set which is contained in B, one has A◦ ⊆ B◦. To prove (I3),
we recall that A◦ is open by definition. If A◦ = A, then A is certainly open. If A is open,
then A is the largest open set which is contained in A, so A◦ = A. Finally, (I4) is a direct
consequence of (I3) because A◦ is open, so A◦ must be equal to its own interior. �
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Definition 4.11 – Neighbourhood

A neighbourhood of the point x ∈ R is an open set U ⊆ R that contains x.

Theorem 4.12 – Interior/Closure in terms of open sets

(a) One has x ∈ A◦ if and only if some neighbourhood of x is contained in A.

(b) One has x ∈ A if and only if every neighbourhood of x intersects A.

Proof. Let us first focus on part (a). If x ∈ A◦, then x lies in the open set A◦ and there
exists ε > 0 such that (x − ε, x + ε) ⊆ A◦. Since A◦ ⊆ A, this gives (x − ε, x + ε) ⊆ A
and so x has a neighbourhood that is contained in A. Conversely, suppose that x has a
neighbourhood U ⊆ A. Since U is an open set that is contained in A and A◦ is the largest
open set that is contained in A, one has U ⊆ A◦ and so x ∈ U ⊆ A◦.

Next, we turn to part (b). To establish this part, we prove the equivalent statement

x /∈ A ⇐⇒ there exists a neighbourhood of x that does not intersect A.

If x /∈ A, then x is not in the intersection of all closed sets that contain A, so there exists a
closed set K ⊇ A such that x /∈ K. The complement U = Kc is then open, it contains x and
it does not intersect A, as every element of A is in K. Thus, x has a neighbourhood U that
does not intersect A. Conversely, suppose U is a neighbourhood of x such that U ∩ A = ∅.
Then x is not in K = U c and this is a closed set which contains A. We conclude that x is
not in the intersection of all closed sets that contain A and thus x /∈ A. �

Definition 4.13 – Limit point

We say that a real number x is a limit point of the set A ⊆ R, if every neighbourhood
of x intersects A at a point other than x.

Example 4.14 It is easy to see that both A = [0, 1] and A = (0, 1) have x = 0 as a limit
point. Thus, a limit point of A might be an element of A, but it does not have to be. �

Theorem 4.15 – Limit points and sequences

Let A ⊆ R and suppose x ∈ R is a limit point of A. Then there exists a sequence {xn}
of elements of A such that xn → x as n → ∞.

Proof. The interval (x − 1

n
, x + 1

n
) is a neighbourhood of x for each n ∈ N. It must thus

intersect A at some point xn 6= x. This gives a sequence {xn} of elements of A such that

x−
1

n
< xn < x+

1

n
for all n ∈ N.

Since x± 1

n
→ x as n → ∞, it follows by the Squeeze Theorem that xn → x as n → ∞. �
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Theorem 4.16 – Limit points and closure

Given any set A ⊆ R, one has A = A ∪ A′, where A′ consists of the limit points of A.

Proof. First, we show that A∪A′ ⊆ A. If x ∈ A′, every neighbourhood of x intersects A at
a point other than x, so every neighbourhood of x intersects A and x ∈ A. This proves the
inclusion A′ ⊆ A and the inclusion A ⊆ A holds by definition, so A ∪ A′ ⊆ A.

Next, we show that A ⊆ A ∪ A′. If x ∈ A, all neighbourhoods of x intersect A. If they
all intersect A at a point other than x, then x ∈ A′. Otherwise, there is a neighbourhood
that intersects A only at x, and this means that x ∈ A. Thus, x ∈ A ∪ A′ in any case. �

5 Continuity

Definition 5.1 – Continuity at a point

Let A,B ⊆ R. We say that a function f : A → B is continuous at the point x ∈ A if,
given any ε > 0, there exists some δ > 0 such that

y ∈ (x− δ, x+ δ) ∩ A =⇒ f(y) ∈ (f(x)− ε, f(x) + ε).

Theorem 5.2 – Composition of continuous functions

Let A,B,C ⊆ R. Suppose that f : A → B is continuous at x ∈ A and that g : B → C
is continuous at f(x). Then the composition g ◦ f : A → C is continuous at x.

Proof. Let ε > 0 be given. Since g is continuous at f(x), there exists δ1 > 0 such that

y ∈ (f(x)− δ1, f(x) + δ1) ∩ B =⇒ g(y) ∈ (g(f(x))− ε, g(f(x)) + ε).

Since f is continuous at x, there similarly exists δ2 > 0 such that

z ∈ (x− δ2, x+ δ2) ∩ A =⇒ f(z) ∈ (f(x)− δ1, f(x) + δ1).

Once we now combine the last two equations, we arrive at

z ∈ (x− δ2, x+ δ2) ∩ A =⇒ f(z) ∈ (f(x)− δ1, f(x) + δ1) ∩B

=⇒ g(f(z)) ∈ (g(f(x))− ε, g(f(x)) + ε).

This verifies the definition of continuity for the composition g ◦ f at the point x. �

Theorem 5.3 – Continuity and sequences

Let A,B ⊆ R and suppose f : A → B is continuous at the point x ∈ A. If {xn} is a
sequence of elements of A such that xn → x as n → ∞, then f(xn) → f(x) as n → ∞.
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Proof. Let ε > 0 be given. Since f is continuous at x, there exists δ > 0 such that

y ∈ (x− δ, x+ δ) ∩ A =⇒ f(y) ∈ (f(x)− ε, f(x) + ε).

Since xn → x as n → ∞, there also exists a natural number N such that

xn ∈ (x− δ, x+ δ) for all n ≥ N .

Once we now combine the last two equations, we find that

xn ∈ (x− δ, x+ δ) ∩ A =⇒ f(xn) ∈ (f(x)− ε, f(x) + ε)

for all n ≥ N . Thus, the definition of convergence holds and f(xn) → f(x) as n → ∞. �

Definition 5.4 – Relatively open/closed

Let A ⊆ B ⊆ R. We say that A is open in B if, given any x ∈ A, there exists ε > 0 such
that (x− ε, x+ ε) ∩B ⊆ A. We say that A is closed in B, if B − A is open in B.

Theorem 5.5 – Relatively open/closed

Let A ⊆ B ⊆ R. Then A is open/closed in B if and only if A has the form A = U ∩ B
for some set U ⊆ R which is open/closed in R, respectively.

Proof. First, suppose that A = U ∩ B and U is open in R. To show that A is open in B,
let x ∈ A be given. Since x ∈ U and U is open in R, there exists ε > 0 such that

(x− ε, x+ ε) ⊆ U =⇒ (x− ε, x+ ε) ∩B ⊆ U ∩ B = A.

This means that A is open in B. Conversely, suppose A is open in B. Given any x ∈ A, we
can then find some εx > 0 such that (x− εx, x+ εx) ∩ B ⊆ A. Consider the set

U =
⋃

x∈A

(x− εx, x+ εx).

This is a union of open intervals and thus open in R. Moreover, one can easily check that

A =
⋃

x∈A

{x} ⊆
⋃

x∈A

(x− εx, x+ εx) ∩ B ⊆ A,

so these sets are all equal and A =
⋃

x∈A(x− εx, x+ εx) ∩ B = U ∩ B, as needed.
It remains to prove the statement about closed sets. If A = K ∩B and K is closed in R,

then one may use De Morgan’s laws to find that

B − A = B − (K ∩ B) = (B −K) ∪ (B −B) = B −K = B ∩Kc.

Since Kc is open in R, this implies that B − A = B ∩Kc is open in B, so A is closed in B.
Conversely, if A is closed in B, then B −A is open in B and B −A = U ∩B for some set U
which is open in R. Since A ⊆ B by assumption, we conclude that

A = B − (B − A) = B − (U ∩ B) = B − U = B ∩ U c.

In other words, A has the form A = U c ∩ B for some set U c which is closed in R. �
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Example 5.6 Since (0, 2) is open in R, the intersection (0, 2) ∩ [0, 1] is open in [0, 1] and
this means that (0, 1] is open in [0, 1]. Similarly, the fact that [0, 2] is closed in R implies
that the intersection [0, 2] ∩ (1, 3) is closed in (1, 3) and thus (1, 2] is closed in (1, 3). �

Theorem 5.7 – Continuity in terms of open sets

Let A,B ⊆ R. To say that a function f : A → B is continuous at all points is to say
that the inverse image f−1(U) is open in A whenever U is open in B.

Proof. First, suppose f is continuous at all points and let U be a set which is open in B.
To show that the inverse image f−1(U) is open in A, we let x ∈ f−1(U). Then f(x) ∈ U
and the set U is open in B, so there exists some ε > 0 such that

(f(x)− ε, f(x) + ε) ∩ B ⊆ U.

Since f is continuous at the point x, there also exists δ > 0 such that

y ∈ (x− δ, x+ δ) ∩ A =⇒ f(y) ∈ (f(x)− ε, f(x) + ε).

Once we now combine the last two equations, we may conclude that

y ∈ (x− δ, x+ δ) ∩ A =⇒ f(y) ∈ U =⇒ y ∈ f−1(U).

This proves the inclusion (x− δ, x+ δ) ∩ A ⊆ f−1(U), so the set f−1(U) is open in A.
Conversely, suppose f−1(U) is open in A whenever U is open in B. To show that f is

continuous at any point x ∈ A, let ε > 0 be given. Then U = (f(x) − ε, f(x) + ε) is open
in R, so the intersection U ∩ B is open in B and f−1(U ∩ B) is open in A. Note that this
set contains x because f(x) ∈ U ∩B. Since the inverse image is open in A, we must have

(x− δ, x+ δ) ∩ A ⊆ f−1(U ∩ B)

for some δ > 0. Given any point y ∈ (x− δ, x+ δ) ∩ A, we must thus have

y ∈ f−1(U ∩ B) =⇒ f(y) ∈ U ∩ B =⇒ f(y) ∈ (f(x)− ε, f(x) + ε).

This verifies the definition of continuity at the point x and also completes the proof. �

Example 5.8 Consider the function f : R → R which is defined by

f(x) =

{

2x if x < 0
x+ 1 if x ≥ 0

}

.

To show that f is not continuous, we let U = (0, 2) and we compute the inverse image

f−1(U) = {x ∈ R : f(x) ∈ U} = {x ∈ R : 0 < f(x) < 2}.

In view of the piecewise definition of the function f , this set can be expressed as

f−1(U) = {x < 0 : 0 < 2x < 2} ∪ {x ≥ 0 : 0 < x+ 1 < 2} = [0, 1).

Noting that U is open in R, while f−1(U) is not, we conclude that f is not continuous. �
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Example 5.9 Suppose that f : R → R is any continuous function and consider the set

A = {x ∈ R : f(x) > 0}.

To show that this set is necessarily open in R, we note that A can be expressed as

A = {x ∈ R : f(x) ∈ (0,∞)} = {x ∈ R : f(x) ∈ U} = f−1(U),

where U = (0,∞). Since U is open and f is continuous, A = f−1(U) is open as well. �

Theorem 5.10 – Inclusions are always continuous

Let A ⊆ R and consider the inclusion map i : A → R which is defined by i(x) = x for
all x ∈ A. This function i is then continuous at all points.

Proof. We assume that U is open in R and we compute the inverse image

i−1(U) = {x ∈ A : i(x) ∈ U} = {x ∈ A : x ∈ U} = U ∩ A.

Since U is open in R, the intersection i−1(U) = U ∩ A is open in A, as needed. �

Theorem 5.11 – Restrictions of continuous functions

Suppose f : R → R is a continuous function and A ⊆ R. If the function g : A → R is
defined by g(x) = f(x) for all x ∈ A, then g is continuous as well.

Proof. We assume that U is open in R and we compute the inverse image

g−1(U) = {x ∈ A : g(x) ∈ U} = {x ∈ A : f(x) ∈ U}

= {x ∈ A : x ∈ f−1(U)} = f−1(U) ∩ A.

Since U is open in R by assumption, f−1(U) is open in R by continuity. This means that
the intersection f−1(U) ∩ A is open in A, so g−1(U) is open in A, as needed. �

Theorem 5.12 – Bolzano’s theorem

Suppose that f : [a, b] → R is continuous at all points and the values f(a), f(b) have
opposite sign. Then there exists a point x ∈ (a, b) such that f(x) = 0.

Proof. Consider the case f(a) < 0 < f(b), as the other case is similar. Letting

A = {a ≤ x ≤ b : f(x) < 0},

we see that a ∈ A and b is an upper bound of A. Thus, supA exists and a ≤ supA ≤ b.
Our goal is to show that supA is actually a root of f , namely that f(supA) = 0.
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Step 1. Suppose f(supA) < 0. Then a ≤ supA < b and supA is an element of

A = {a ≤ x ≤ b : f(x) < 0} = {a ≤ x ≤ b : f(x) ∈ U} = f−1(U),

where U = (−∞, 0). Since U is open in R, we see that A = f−1(U) is open in [a, b] by
continuity. Since supA is an element of A, we can thus find some ε > 0 such that

(supA− ε, supA+ ε) ∩ [a, b] ⊆ A.

Let δ = min{ ε
2
, b− supA} for convenience. Then supA < supA+ δ ≤ b and one has

supA+ δ ∈ (supA, supA+ ε) ∩ [a, b] ⊆ A.

This makes supA+ δ an element of A which is larger than supA, a contradiction.

Step 2. Suppose f(supA) > 0. Then a < supA ≤ b and supA is an element of

B = {a ≤ x ≤ b : f(x) > 0} = {a ≤ x ≤ b : f(x) ∈ V } = f−1(V ),

where V = (0,∞). Arguing as before, we find that B is open in [a, b] and that

(supA− ε, supA+ ε) ∩ [a, b] ⊆ B

for some ε > 0. Since supA− ε is smaller than supA, there exists some x ∈ A such that

supA− ε < x ≤ supA.

This implies that x ∈ B as well, contrary to the fact that A ∩ B = ∅ by definition. �

Definition 5.13 – Uniform continuity

Let A,B ⊆ R. We say that a function f : A → B is uniformly continuous on A if, given
any ε > 0, there exists some δ > 0 such that

|x− y| < δ =⇒ |f(x)− f(y)| < ε for all x, y ∈ A.

• The definition of uniform continuity is similar to the definition of continuity, but it is
more stringent. When it comes to uniform continuity, one needs a single δ > 0 that
satisfies the definition at all points. When it comes to continuity at the point x, the
point x is fixed in advance and the choice of δ > 0 may generally depend on x.

Theorem 5.14 – Uniform continuity implies continuity

If a function f is uniformly continuous, then f is continuous at all points.
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Proof. Let A,B ⊆ R and suppose f : A → B is uniformly continuous. To show that f is
continuous at each point x ∈ A, let ε > 0 be given. Then there exists δ > 0 such that

|x− y| < δ =⇒ |f(x)− f(y)| < ε for all x, y ∈ A.

Since x ∈ A by assumption, one may rewrite the last equation in the form

y ∈ (x− δ, x+ δ) ∩ A =⇒ f(y) ∈ (f(x)− ε, f(x) + ε).

This verifies the definition of continuity at the point x, so the proof is complete. �

Example 5.15 Consider f(x) = x2 as a function f : [0, a] → R, where a > 0 is fixed. To
show that f is uniformly continuous on the given interval, we note that

|f(x)− f(y)| = |x2 − y2| = |x+ y| · |x− y|.

Let ε > 0 be given. As long as x, y ∈ [0, a], we then have |x+ y| = x+ y ≤ 2a and

|x− y| < δ =⇒ |f(x)− f(y)| = |x+ y| · |x− y| ≤ 2a|x− y| < 2aδ.

If we now take δ = ε
2a
, we find that |f(x)− f(y)| < ε, so f is uniformly continuous. �

Example 5.16 Consider f(x) = x2 as a function f : R → R. In this case, we show that f
is not uniformly continuous. Indeed, suppose there exists some δ > 0 such that

|x− y| < δ =⇒ |x2 − y2| < 1.

We can then look at the special case x = y + δ
2
. Since |x− y| < δ, we find that

1 > |x2 − y2| = |x− y| · |x+ y| =
δ

2
·

∣

∣

∣

∣

2y +
δ

2

∣

∣

∣

∣

> δy

for any y > 0. This is obviously false when y ≥ 1

δ
, so f is not uniformly continuous. �

Theorem 5.17 – Differentiable functions with bounded derivative

Suppose that f : R → R is a differentiable function and suppose that there exists k > 0
such that |f ′(x)| ≤ k for all x ∈ R. Then f is uniformly continuous.

Proof. Let ε > 0 be given and let x, y ∈ R. In view of the Mean Value Theorem, one has

|f(x)− f(y)| = |f ′(z)| · |x− y|

for some point z between x and y. Since |f ′(z)| ≤ k by assumption, this implies that

|x− y| < δ =⇒ |f(x)− f(y)| ≤ k|x− y| < kδ.

Taking δ = ε/k now gives |f(x)− f(y)| < ε. In particular, f is uniformly continuous. �
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6 Completeness

Definition 6.1 – Cauchy sequence

We say that a sequence {xn} of real numbers is a Cauchy sequence if, given any ε > 0,
there exists some natural number N such that

|xm − xn| < ε for all m,n ≥ N .

Theorem 6.2 – Convergent implies Cauchy implies bounded

Every convergent sequence is Cauchy and every Cauchy sequence is bounded.

Proof. To prove the first part, suppose that the sequence {xn} converges to x as n → ∞.
Given any ε > 0, we can then find some natural number N such that

|xn − x| <
ε

2
for all n ≥ N .

Using this fact along with the triangle inequality, we conclude that

|xm − xn| ≤ |xm − x|+ |x− xn| <
ε

2
+

ε

2
= ε

for all m,n ≥ N . This shows that the given sequence is also Cauchy.
To prove the second part, suppose that {xn} is a Cauchy sequence. Using the definition

of a Cauchy sequence with ε = 1, we may then find some natural number N such that

|xm − xn| < 1 for all m,n ≥ N .

This inequality yields a precise bound for the terms xm with m ≥ N because

|xm| ≤ |xm − xN |+ |xN | < 1 + |xN | for all m ≥ N .

On the other hand, it is clear that the remaining terms can be trivially bounded by

|xm| ≤ max{|x1|, |x2|, . . . , |xN |} for all 1 ≤ m ≤ N .

We conclude that |xm| ≤ max{|x1|, |x2|, . . . , |xN |, 1 + |xN |} for any m ≥ 1. �

Example 6.3 Consider the sequence defined by xn = (−1)n. Since its terms are oscillating
between −1 and 1, this sequence is bounded, but it is neither Cauchy nor convergent. �

Definition 6.4 – Complete set

We say that a set A ⊆ R is complete, if every Cauchy sequence {xn} which consists of
elements of A must actually converge to an element of A.

Example 6.5 We show that A = (0, 1] is not complete. Note that x = 0 is the limit of the
sequence defined by xn = 1

n
. This sequence consists of elements of A and it is convergent,

hence also Cauchy. Since the limit is not an element of A, however, A is not complete. �
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Theorem 6.6 – Bolzano-Weierstrass theorem

Every bounded sequence of real numbers has a convergent subsequence.

Proof. Suppose that {xn} is a bounded sequence of real numbers. If we can show that it
has a monotonic subsequence {xnk

}, then that subsequence will converge by the monotonic
convergence theorem and the proof will be complete.

Let us say that xN is a peak point, if all subsequent terms are smaller than xN , namely
if xn < xN for all n > N . There are two possible cases. If there are infinitely many peak
points, then these form a decreasing subsequence xN1

, xN2
, xN3

, . . . because

xN1
> xN2

> xN3
> . . .

by definition. Otherwise, there are finitely many peak points and we may assume that there
are no peak points xn with n ≥ n1. Since xn1

is not a peak point, there exists n2 > n1 such
that xn2

≥ xn1
. Since xn2

is not a peak point, there exists n3 > n2 such that xn3
≥ xn2

. One
may thus proceed in this manner to obtain an increasing subsequence. �

Theorem 6.7 – Cauchy sequence with convergent subsequence

Suppose that {xn} is a Cauchy sequence of real numbers that has a subsequence {xnk
}

which converges. Then the original sequence {xn} converges as well.

Proof. Let us denote by x the limit of the subsequence {xnk
}. To show that the original

sequence also converges to x, let ε > 0 be given. Since the sequence {xn} is Cauchy, there
exists a natural number N1 ∈ N such that

|xm − xn| < ε/2 for all m,n ≥ N1.

Since the subsequence {xnk
} converges to x, there also exists some N2 ∈ N such that

|xnk
− x| < ε/2 for all nk ≥ N2.

Let N = max{N1, N2} and fix some nk ≥ N . Using the inequalities above, we now get

|xn − x| ≤ |xn − xnk
|+ |xnk

− x| <
ε

2
+

ε

2
= ε

for all n ≥ N . This shows that the original sequence {xn} converges to x as n → ∞. �

Theorem 6.8 – Completeness of R

Every Cauchy sequence in R converges. Thus, the set of real numbers is complete.

Proof. Suppose that {xn} is a Cauchy sequence in R. Then {xn} is bounded, so it has a
convergent subsequence by the Bolzano-Weierstrass theorem. Being a Cauchy sequence with
a convergent subsequence, {xn} must then converge by the previous theorem. �
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Theorem 6.9 – Equivalence of various results

The following results are equivalent: (1) Axiom of completeness, (2) Monotone conver-
gence theorem, (3) Bolzano-Weierstrass theorem and (4) Completeness of R.

Proof. We have already seen that (1) implies (2) in the proof of Theorem 3.7, that (2)
implies (3) in the proof of Theorem 6.6 and that (3) implies (4) in the proof of Theorem 6.8.
If we now show that (4) implies (1), then the equivalence of these results will follow.

Suppose A is a nonempty subset of R that has an upper bound. One may then fix an
element of A and an upper bound of A. Looking at the average of these two, we try to find
either a larger element of A or a smaller upper bound of A. Suppose that we already have
one element an ∈ A and one upper bound bn. Then an ≤ bn and we consider two cases.

Case 1. If the average an+bn
2

is an upper bound of A, we let an+1 = an and bn+1 =
an+bn

2
. In

this case, we have an ≤ bn+1 ≤ bn and also bn+1 − an+1 =
1

2
(bn − an).

Case 2. If the average an+bn
2

is not an upper bound of A, then there exists an element of A
which is larger. We choose an+1 ∈ A such that an+1 >

an+bn
2

≥ an and let bn+1 = bn. Then

bn+1 − an+1 < bn −
an + bn

2
=

bn − an
2

.

This process gives rise to an increasing sequence {an} of elements of A and a decreasing
sequence {bn} of upper bounds of A. Note that an ≤ bn for all n ∈ N and that

bn+1 − an+1 ≤
bn − an

2
=⇒ bn+1 − an+1 ≤

b1 − a1
2n

by induction. Thus, the length of the interval [aN , bN ] becomes arbitrarily small. On the
other hand, this interval contains all terms an, bn with n ≥ N because aN ≤ an ≤ bn ≤ bN
for all such n. In particular, {an}, {bn} are Cauchy, so they converge by completeness.

Let s be the limit that an approaches as n → ∞. Then bn approaches the same limit,
as the difference bn − an approaches zero. We claim that s is the least upper bound of A.
Given any element a ∈ A, we have a ≤ bn for all n ∈ N and thus a ≤ s. This shows that s
is an upper bound of A. Given any other upper bound t, we have t ≥ an for all n ∈ N and
thus t ≥ s. This shows that s is the least upper bound of A, as needed. �

Theorem 6.10 – Complete subsets of R

A set A ⊆ R is complete, if and only if A is closed in R.

Proof. First, suppose that A ⊆ R is closed and let {xn} be a Cauchy sequence of elements
of A. Such a sequence converges because R is complete, while its limit is an element of A
because of Theorem 4.6. This means that A itself is complete.

Conversely, suppose that A ⊆ R is complete. To show that A is closed in R, we need to
show that Ac is open in R. Given any x ∈ Ac, we should thus be able to find some ε > 0
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such that (x− ε, x + ε) ⊆ Ac. If it happens that (x− 1

n
, x + 1

n
) ⊆ Ac for some n ∈ N, then

we are done. Otherwise, this inclusion fails for each n ∈ N, so there exist points

x−
1

n
< xn < x+

1

n
, xn ∈ A.

It follows by the Squeeze Theorem that xn → x as n → ∞. Since {xn} is convergent, it is
also Cauchy and its limit x is an element of A by completeness. This contradicts our initial
assumption that x ∈ Ac. Thus, we do have (x− 1

n
, x+ 1

n
) ⊆ Ac for some n ∈ N. �

Definition 6.11 – Dense subset

We say that a set A ⊆ R is dense in R, if the closure of A is equal to A = R.

Theorem 6.12 – Every open interval contains a rational

Given any two real numbers x < y, there exists a rational number x < z < y.

Proof. Suppose first that x, y are both positive. We need to ensure that x < m/n < y for
some natural numbers m,n and one may express this inequality as nx < m < ny. First of
all, we choose a natural number n so that ny − nx > 1. Since

ny − nx > 1 ⇐⇒ n(y − x) > 1 ⇐⇒ n > 1/(y − x),

such a natural number exists by the Archimedean property. Consider the set

A = {m ∈ N : m > nx}.

Since A is a nonempty subset of N, it has a minimum by Theorem 2.15. Let us denote its
minimum by m. Then m ∈ A and m− 1 /∈ A, so it easily follows that

m− 1 ≤ nx < m =⇒ nx < m ≤ nx+ 1 < ny =⇒ x <
m

n
< y.

This completes the proof in the case that x, y are both positive. If x, y are both negative,
then the above argument gives a rational number z that lies between −x and −y, so −z is
a rational number that lies between x and y. Suppose, finally, that x is negative and y is
positive. In that case, the result is trivial because z = 0 is rational and x < z < y. �

Theorem 6.13 – Q is dense in R

The set of rational numbers Q is a dense subset of R.

Proof. We need to show that Q = Q ∪Q′ contains all real numbers. In fact, we show that
every real number x is a limit point of Q. Suppose U is a neighbourhood of x. Since U is
open, we must have (x − ε, x + ε) ⊆ U for some ε > 0. This gives (x − ε, x) ⊆ U and the
last interval contains a rational number, so U intersects Q at a point other than x. �
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7 Connectedness

Definition 7.1 – Connected set

We say that A ⊆ R is connected, if A cannot be expressed as the union A = A1 ∪A2 of
two nonempty disjoint sets which are both open in A.

Example 7.2 Consider the set A = [0, 1] ∪ [2, 3). If we let A1 = [0, 1], then A1 is not open
in R, but it is easy to check that A1 is open in A. For instance, (−1, 3/2) is open in R and
its intersection with A is open in A, so [0, 1] is open in A. Using the same reasoning, one
finds that A2 = [2, 3) is also open in A. This means that A = A1 ∪ A2 is not connected. �

Example 7.3 Consider the set A = [0, 1] ∪ {2}. If we let A1 = [0, 1] and A2 = {2}, then
neither of these sets is open in R, but they are both open in A. This is because A1 is the
intersection of (−1, 3/2) with A and A2 is the intersection of (3/2, 3) with A. Since A1, A2

are also nonempty and disjoint, we conclude that A = A1 ∪ A2 is not connected. �

Definition 7.4 – Intermediate point property

We say that A ⊆ R has the intermediate point property, if any point that lies between
two elements of A is an element of A, namely if x, y ∈ A and x < z < y implies z ∈ A.

Theorem 7.5 – Criterion for being connected

To say that A ⊆ R is connected is to say that A has the intermediate point property.

Proof. Suppose first that A does not have the intermediate point property. Then there
exist some numbers x < z < y such that x, y ∈ A and z /∈ A. Consider the sets

A1 = (−∞, z) ∩ A, A2 = (z,∞) ∩ A.

These are open in A and they are also nonempty because A1 contains x and A2 contains y.
Since z /∈ A, it is clear that A1 ∪ A2 = A. This implies that A is not connected.

Suppose now that A does have the intermediate point property. To show that A must
be connected, assume A = A1 ∪ A2 for some nonempty disjoint sets A1, A2 which are both
open in A. We can then pick some elements x ∈ A1 and y ∈ A2. Assume x < y without loss
of generality. Then [x, y] ⊆ A by the intermediate point property. Let us now define

B = [x, y] ∩ A1.

Since x ∈ B and y is an upper bound of B, we see that supB exists and x ≤ supB ≤ y. In
particular, supB is an element of [x, y] ⊆ A, so it is an element of either A1 or A2.

Case 1. Suppose that supB ∈ A1. Since A1 is open in A, we must then have

(supB − ε, supB + ε) ∩ A ⊆ A1
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for some ε > 0. Since supB /∈ A2 in this case, one has supB 6= y and so x ≤ supB < y.
Once we now let δ = min{ ε

2
, y − supB} for convenience, we get supB + δ ≤ y and

supB + δ ∈ (supB, supB + ε) ∩ [x, y] ⊆ (supB, supB + ε) ∩ A ⊆ A1.

This makes supB + δ an element of [x, y] ∩ A1 = B, which is obviously a contradiction.

Case 2. Suppose that supB ∈ A2. Since A2 is open in A, we must then have

(supB − ε, supB + ε) ∩ A ⊆ A2

for some ε > 0. Since supB − ε < supB, there also exists some element z ∈ B such that

supB − ε < z ≤ supB.

We note that B = [x, y] ∩ A1 by definition, while [x, y] ⊆ A by above. This gives

z ∈ (supB − ε, supB] ∩ [x, y] ⊆ (supB − ε, supB] ∩ A ⊆ A2,

which is a contradiction because z ∈ B ⊆ A1 and A1, A2 have no element in common. �

Theorem 7.6 – Connected subsets of R

The only connected subsets of R are ∅, R, sets with one element, and also intervals.

Proof. It is easy to see that each of these sets has the intermediate point property, so each
of these sets is connected. Conversely, suppose that A ⊆ R is nonempty and connected.

Case 1. If A is bounded from above and below, we let a = inf A and b = supA. Then

a ≤ x ≤ b for all x ∈ A

and this means that A ⊆ [a, b]. If we can also show that (a, b) ⊆ A, then this will leave

A = (a, b), A = (a, b], A = [a, b), A = [a, b]

as the only possibilities. Suppose now that z ∈ (a, b). Since z > a, we have z > inf A and
there exists some x ∈ A such that z > x. Since z < b, we have z < supA and there exists
some y ∈ A such that z < y. This gives x, y ∈ A and x < z < y. On the other hand, A is
connected, so it has the intermediate point property. We conclude that z ∈ A, as needed.

Case 2. If A is bounded from below but not from above, we let a = inf A. Then

a ≤ x for all x ∈ A

and this means that A ⊆ [a,∞). If we can also show that (a,∞) ⊆ A, then this will leave

A = (a,∞), A = [a,∞)

as the only possibilities. Once again, suppose that z ∈ (a,∞). Since z > a = inf A, there
exists some x ∈ A such that z > x. Since A is not bounded from above, z is not an upper
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bound of A, so we can find some y ∈ A such that z < y. This gives x, y ∈ A and x < z < y.
Using the intermediate point property once again, we conclude that z ∈ A, as needed.

Case 3. If A is bounded from above but not from below, we let b = supA and we proceed as
in the previous case to find that either A = (−∞, b) or else A = (−∞, b].

Case 4. If A is not bounded from either above or below, we may use our previous approach
to conclude that A = R. In fact, let z ∈ R be given. Since z is not a lower bound of A, there
exists some x ∈ A such that x < z. Since z is not an upper bound of A, there also exists
some y ∈ A such that y > z. This gives x < z < y and thus z ∈ A as before. �

Theorem 7.7 – Subsets both open and closed

If a set A ⊆ R is connected, then the only subsets of A which are both open and closed
in A are the trivial subsets ∅, A. If a set A ⊆ R is not connected, however, then A has
a nontrivial subset other than ∅, A which is both open and closed in A.

Proof. First, suppose that A is connected and B ⊆ A is both open and closed in A. Then
the disjoint sets B,A − B are both open in A and their union is A. Since A is connected,
one of these sets must be empty. This means that either B = ∅ or else B = A.

Next, suppose that A is not connected. Then A = A1 ∪ A2 for some nonempty disjoint
sets A1, A2 which are both open in A. Since the complement of A1 is A2, we see that A1 is
both open and closed in A. This is a nontrivial subset of A other than ∅, A. �

Theorem 7.8 – Continuous image of connected sets

If f : A → R is continuous and A ⊆ R is connected, then f(A) is connected as well.

Proof. Suppose that f(A) is not connected and write f(A) = B1 ∪ B2 for some nonempty
disjoint sets B1, B2 which are both open in f(A). Let A1 = f−1(B1) and A2 = f−1(B2) be
the inverse images. To show that the sets A1, A2 are also disjoint, we note that

x ∈ A1 ∩ A2 =⇒ x ∈ f−1(B1) ∩ f−1(B2) =⇒ f(x) ∈ B1 ∩B2.

There is no such element x because B1 ∩ B2 is empty. To show that A1, A2 are nonempty,
pick some yi ∈ Bi for each i. Then yi ∈ f(A), so yi = f(xi) for some xi ∈ A and

f(xi) = yi ∈ Bi =⇒ xi ∈ f−1(Bi) = Ai

for each i. Finally, the sets A1, A2 are both open in A by continuity, while their union is

A1 ∪ A2 = f−1(B1) ∪ f−1(B2) = f−1(B1 ∪B2) = f−1(f(A)) ⊇ A.

This implies that A1 ∪ A2 = A, which contradicts our assumption that A is connected. �

Example 7.9 Consider a continuous function f : (0, 1) → R. Since (0, 1) is connected, its
image is connected as well. Thus, the image cannot be Q or (0, 1) ∪ (2, 3), for instance. �

Example 7.10 Consider a continuous function f : [a, b] → R. Since [a, b] is connected, its
image is also connected, so it has the intermediate point property. As the image includes
the values f(a) and f(b), it actually includes every value that lies between them. �
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8 Countability

Definition 8.1 – Countable

We say that a set A is countably infinite, if there is a bijection f : N → A. We say that
a set A is countable, if A is either finite or else countably infinite.

Theorem 8.2 – Cantor’s diagonal argument

The unit interval (0, 1) is uncountable.

Proof. Suppose that there is a bijection f : N → (0, 1). Then the numbers f(1), f(2), . . .
are all positive numbers which are less than 1, so their decimal expansion has the form

f(1) = 0.a11a12a13a14 . . .

f(2) = 0.a21a22a23a24 . . .

f(3) = 0.a31a32a33a34 . . .

and so on. We now proceed to change one of the digits in each case. Define

bnn =

{

1 if ann 6= 1
2 if ann = 1

}

and note that bnn 6= ann for each n. The number x = 0.b11b22b33b44 . . . is then in (0, 1) and
it differs from f(1) in the first decimal digit, from f(2) in the second decimal digit, and so
on. This means that x is not in the image and that f is not bijective, a contradiction. �

Theorem 8.3 – Subsets of N are countable

Every subset of N is countable.

Proof. If a set A ⊆ N is finite, then it is certainly countable. If a set A ⊆ N is infinite, then
we need to show that A is countably infinite. We thus need to find a bijection f : N → A.
Since A is infinite, it is nonempty and minA exists by Theorem 2.15, so one may let

f(1) = minA.

Assuming that f(1), f(2), . . . , f(n− 1) have already been defined, we may then take

f(n) = minA− {f(1), f(2), . . . , f(n− 1)} for each n ≥ 2.

To show that the resulting function f is injective, suppose that m > n. Then f(m) is
the least element of the set A− {f(1), f(2), . . . , f(m− 1)}, while f(n) is not an element of
this set, so the two are not equal and f is injective.

To show that f : N → A is surjective, let x ∈ A ⊆ N be given. Since f is known to be
injective, the image f(N) is infinite, so it contains arbitrarily large numbers. Thus,

B = {n ∈ N : f(n) ≥ x}
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is nonempty and m = minB exists by Theorem 2.15. If it happens that m = 1, then

1 ∈ B =⇒ f(1) ≥ x =⇒ minA ≥ x ≥ minA =⇒ x = minA = f(1).

If it happens that m > 1, then m ∈ B and 1, 2, . . . ,m− 1 /∈ B. This implies that

f(1), f(2), . . . , f(m− 1) < x ≤ f(m).

Thus, the set A − {f(1), f(2), . . . , f(m − 1)} contains x and the minimum of this set is at
most x. Since the minimum is f(m) ≥ x, we conclude that f(m) = x, as needed. �

Theorem 8.4 – Criteria for being countable

The following statements are equivalent for every nonempty set A.

(a) The set A is countable.

(b) There exists a surjective function f : N → A.

(c) There exists an injective function g : A → N.

Proof. First, we show that (a) implies (b). If A is countably infinite, then there exists a
bijective function f : N → A and this is surjective. Otherwise, A = {a1, a2, . . . , an} is finite
and one may define a surjective function f : N → A by setting

f(k) =

{

ak if k ≤ n
an if k > n

}

.

Next, we show that (b) implies (c). Suppose that f : N → A is surjective. To define an
injective function g : A → N, let x ∈ A be given. Then f−1({x}) is a nonempty subset of N
by surjectivity, so we may let g(x) = min f−1({x}). It is easy to check that

z ∈ f−1({x}) ∩ f−1({y}) =⇒ x = f(z) = y =⇒ x = y.

Thus, the sets f−1({x}) and f−1({y}) have no element in common whenever x 6= y, so their
minimum elements are distinct whenever x 6= y. This means that g is injective.

Finally, we show that (c) implies (a). If A is finite, then A is certainly countable. If it
is infinite and g : A → N is injective, then g : A → g(A) is bijective. However, g(A) ⊆ N is
countable by the previous theorem, so it must be countably infinite. In other words, there
exists a bijection h : g(A) → N. We conclude that the composition h ◦ g : A → N is also a
bijection. This implies that A is countably infinite and thus countable. �

Example 8.5 To show that Z is countable, it suffices to find a surjection f : N → Z. This
amounts to defining f(1), f(2), f(3), . . . in such a way that all integers are listed. A simple
way to achieve this is to order the integers as 0, 1,−1, 2,−2, . . . alternating between the
positive and the non-positive ones. More precisely, one may define f : N → Z by letting

f(n) =

{

n/2 if n is even
−(n− 1)/2 if n is odd

}

.

If m ≥ 1 is a positive integer, then f(2m) = m and m lies in the image of f . If x ≤ 0 is a
non-positive integer, then 1− 2x ∈ N and f(1− 2x) = x also lies in the image of f . �
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Example 8.6 We show that N× N is countable by finding an injection f : N× N → N. A
typical example is f(m,n) = 2m3n. Suppose that 2m3n = 2x3y for some m,n, x, y ∈ N. If
it happens that m > x, then 2m−x3n = 3y, and this is not possible because 2m−x3n is even,
whereas 3y is odd. If it happens that m < x, then 3n = 2x−m3y and a similar contradiction
arises. We conclude that m = x and 3n = 3y, so n = y and the function f is injective. �

Theorem 8.7 – Product of countable sets

The product A× B of two sets consists of all pairs (x, y) with x ∈ A and y ∈ B. If the
sets A,B are both countable, then their product A×B is countable as well.

Proof. Since A,B are countable, there exist injective functions f : A → N and g : B → N.
One may thus define a function h : A × B → N × N by letting h(x, y) = (f(x), g(y)). It is
easy to check that this function is injective, as

h(x1, y1) = h(x2, y2) =⇒ (f(x1), g(y1)) = (f(x2), g(y2))

=⇒ f(x1) = f(x2) and g(y1) = g(y2)

=⇒ x1 = x2 and y1 = y2.

Since N × N is countable by the previous example, it is countably infinite and there is a
bijection ϕ : N× N → N. It easily follows that ϕ ◦ h : A×B → N is injective. �

Theorem 8.8 – Q is countable

The set Q of all rational numbers is countable.

Proof. The set Q consists of all quotients m/n, where m ∈ Z and n ∈ N. One may thus
define a surjection f : Z × N → Q using the formula f(m,n) = m/n. Since Z,N are both
countable, the same is true for their product Z × N. This gives a bijection ϕ : N → Z × N.
Since the composition f ◦ ϕ : N → Q is surjective, we conclude that Q is countable. �

9 Compactness

Definition 9.1 – Compact set

An open cover of A ⊆ R is a collection of sets Ui which are open in R and their union
contains A. We say that A is compact, if every open cover of A has a finite subcover,
namely, if there is always a finite subcollection of open sets which still cover A.

Example 9.2 We show that every finite set is compact. Suppose that the sets Ui form an
open cover of the set A = {a1, a2, . . . , an}. Then A is contained in the union of the sets Ui,
so each ak is contained in some Uik . This implies that A is contained in Ui1 ∪ · · · ∪ Uin . �
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Example 9.3 We show that R is not compact. Consider the open intervals Un = (−n, n)
for each n ∈ N. These are increasing in the sense that U1 ⊆ U2 ⊆ U3 ⊆ · · · and their union
is all of R, so they form an open cover of R. If R was compact, then R would be covered by
finitely many of these sets, so it would be contained in the union of the first N , say. This is
not the case, however, because U1 ∪ U2 ∪ · · · ∪ UN = UN = (−N,N) for each N ∈ N. �

Theorem 9.4 – Compact implies bounded

If a set A ⊆ R is compact, then A must be bounded.

Proof. Consider the open intervals Un = (−n, n) for each n ∈ N. These intervals form
an open cover of R, so they certainly cover A as well. Since A is compact, it is covered by
finitely many of these sets, so it is contained in the union of the first N , say. This gives

A ⊆ U1 ∪ U2 ∪ · · · ∪ UN =⇒ A ⊆ UN .

In other words, A must be contained in UN = (−N,N), so A is certainly bounded. �

Example 9.5 Bounded sets are not necessarily compact. For instance, let A = (0, 2) and
consider the open intervals Un = ( 1

n
, 2) for each n ∈ N. Since the left endpoint decreases to

zero, one has U1 ⊆ U2 ⊆ U3 ⊆ · · · and the union of these sets is equal to A. In particular,
these sets form an open cover of A. If A was compact, then A would be covered by finitely
many of the sets, say U1, U2, . . . , UN . Since the union of these sets is UN , we would then
have A ⊆ UN . This is not the case because UN = ( 1

N
, 2) is a proper subset of A = (0, 2). �

Theorem 9.6 – Continuous image of compact sets

If f : A → R is continuous and A ⊆ R is compact, then f(A) is compact as well.

Proof. Suppose that the sets Ui form an open cover of f(A). Since each f−1(Ui) is open
in A by continuity, one may write f−1(Ui) = A∩Wi for some set Wi which is open in R. To
see that the sets Wi form an open cover of A, we note that

A ⊆ f−1(f(A)) ⊆ f−1

(

⋃

i

Ui

)

=
⋃

i

f−1(Ui) ⊆
⋃

i

Wi.

Since A is compact by assumption, it is covered by finitely many of these sets, say

A ⊆ Wi1 ∪Wi2 ∪ · · · ∪Win .

To finish the proof, it remains to show that the corresponding sets Uik cover f(A). Indeed,
suppose that y ∈ f(A) and write y = f(x) for some x ∈ A. Then x ∈ Wik for some k, so

x ∈ A ∩Wik =⇒ x ∈ f−1(Uik) =⇒ y = f(x) ∈ Uik .

In particular, f(A) is covered by finitely many of the sets Ui and f(A) is compact. �
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Example 9.7 The last two theorems provide an easy method for showing that a set is not
compact. For instance, let A = (0, 2). If this set is compact and f : A → R is continuous,
then the image f(A) is compact, hence also bounded. On the other hand, f(x) = 1/x is
continuous on A, but it is not bounded. This implies that A is not compact. �

Theorem 9.8 – Extreme value theorem

If f : A → R is continuous and A ⊆ R is compact, then f attains both a minimum and
a maximum value. In other words, there exist points x1, x2 ∈ A such that

f(x1) ≤ f(x) ≤ f(x2) for all x ∈ A.

Proof. We only show that f attains a maximum value, as the argument is similar in the
case of a minimum value. Since f(A) is compact by Theorem 9.6, it must also be bounded
by Theorem 9.4. Let M denote the least upper bound of f(A) = {f(x) : x ∈ A}. Then

f(x) ≤ M for all x ∈ A

and we need to show that equality holds at some point x ∈ A. If that is not the case, then
we have M − f(x) > 0 for all x ∈ A and one may define g : A → R using the formula

g(x) =
1

M − f(x)
.

This is a composition of continuous functions, so it is itself continuous, and thus bounded
by Theorems 9.4 and 9.6. Let R > 0 be an upper bound for g(x) and note that

g(x) ≤ R ⇐⇒ M − f(x) ≥ R−1 ⇐⇒ f(x) ≤ M −R−1.

Since the leftmost inequality holds for all x ∈ A, the rightmost inequality holds as well. This
makes M − R−1 an upper bound of f(A). On the other hand, M is the least upper bound
by definition and M −R−1 is smaller. We have thus reached a contradiction. �

Theorem 9.9 – Finite closed intervals are compact

The closed interval [a, b] is a compact subset of R for all real numbers a < b.

Proof. Suppose that the closed interval I0 = [a, b] is not compact. Then there exist some
open sets Ui that cover I0 in such a way that no finite number of them cover I0. Using the
bisection method, we now replace I0 by a closed interval of arbitrarily small length.

Split the original interval I0 into two subintervals of equal length. If both of those are
covered by finitely many of the sets Ui, then their union I0 is also covered by finitely many
sets. This is not the case, however, so one of the two subintervals is not covered by finitely
many of the sets Ui. Denote that subinterval by I1 and proceed in this manner to obtain a
sequence of closed intervals I0 ⊇ I1 ⊇ I2 ⊇ · · · such that no In is covered by finitely many
of the sets Ui and the length of each interval In is half the length of the previous interval.
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According to the nested interval property, the intersection
⋂

∞

n=0
In is nonempty. Let x

be a point in this intersection. Since x ∈ I0 and the sets Ui form an open cover of I0, we
must have x ∈ Uik for some index ik. Moreover, this set is open, so we actually have

(x− ε, x+ ε) ⊆ Uik for some ε > 0.

Note that the interval I = (x− ε, x+ ε) is centred around x and its length is fixed. On the
other hand, In is an interval containing x whose length (b− a)/2n is arbitrarily small. If we
thus pick a large enough value of n, we can ensure that In is contained in I so that

In ⊆ (x− ε, x+ ε) ⊆ Uik .

This contradicts the fact that In is not covered by finitely many of the sets Ui. �

Theorem 9.10 – Compact implies closed in R

If a set A ⊆ R is compact, then A must be closed in R.

Proof. We show that the complement Ac is open in R. Let y ∈ Ac be given and consider
the function f : A → R which is defined by f(x) = |x− y|. This measures the distance from
the point y. Since f is continuous and A is compact, f must attain a minimum value which
is obviously non-negative. If the minimum value is zero, then x = y for some x ∈ A and this
contradicts our assumption that y ∈ Ac. Thus, the minimum value is ε > 0 and one has

f(x) = |x− y| ≥ ε for all x ∈ A.

This is easily seen to imply that (y − ε, y + ε) ⊆ Ac because

x ∈ (y − ε, y + ε) =⇒ |x− y| < ε =⇒ x ∈ Ac.

In particular, the interval (y − ε, y + ε) is contained in Ac and so Ac is open, indeed. �

Theorem 9.11 – Heine-Borel theorem

A subset of R is compact if and only if it is bounded and closed in R.

Proof. Suppose first that A ⊆ R is compact. Then A is bounded by Theorem 9.4 and A is
closed in R by Theorem 9.10. Suppose now that A is bounded and closed in R. Then A is
contained in [−N,N ] for some N > 0. We now use this fact to conclude that A is compact.
Suppose that the sets Ui form an open cover of A. Since A is closed, its complement Ac is
open in R. Note that the sets Ui along with Ac form an open cover of R, so they certainly
cover [−N,N ]. Since [−N,N ] is compact by Theorem 9.9, it is covered by finitely many of
these sets. Thus, A itself is covered by finitely many sets and A is compact. �

Theorem 9.12 – Continuity on compact sets

If f : A → R is continuous and A ⊆ R is compact, then f is uniformly continuous.
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Proof. Let ε > 0 be given. Since f is continuous at each point x ∈ A, one may then find
some δx > 0 which generally depends on x such that

|x− y| < δx =⇒ |f(x)− f(y)| < ε/2 (9.1)

for all y ∈ A. The open intervals (x − 1

2
δx, x + 1

2
δx) form an open cover of A. Since A is

compact, however, finitely many of these intervals must cover A. Suppose that

A ⊆
n
⋃

i=1

(

xi −
1

2
δxi

, xi +
1

2
δxi

)

and let δ = min{1

2
δx1

, 1
2
δx2

, . . . , 1
2
δxn

}. We claim that the definition of uniform continuity
holds for this choice of δ. Indeed, suppose that x, y ∈ A and |x− y| < δ. Then

x ∈ A =⇒ x ∈

(

xi −
1

2
δxi

, xi +
1

2
δxi

)

=⇒ |x− xi| <
1

2
δxi

for some index 1 ≤ i ≤ n. Using this fact along with the triangle inequality, we now get

|xi − y| ≤ |xi − x|+ |x− y| <
1

2
δxi

+ δ ≤ δxi
.

Since we also have |x− xi| < δxi
, it follows by equation (9.1) that

|f(x)− f(y)| ≤ |f(x)− f(xi)|+ |f(xi)− f(y)| <
ε

2
+

ε

2
= ε.

This verifies the definition of uniform continuity and it also completes the proof. �

10 Integrability

Definition 10.1 – Partition and refinement

We say that P = {x0, x1, . . . , xn} is a partition of [a, b], if the elements of P are such
that a = x0 < x1 < · · · < xn = b. We say that a partition Q is a refinement of the
partition P , if Q contains more points than P does, namely if P ⊆ Q.

Definition 10.2 – Lower and upper Darboux sums

Suppose that f : [a, b] → R is bounded. Given a partition P = {x0, x1, . . . , xn} of [a, b],
we define the lower Darboux sum L(f, P ) and the upper Darboux sum U(f, P ) by

L(f, P ) =
n−1
∑

k=0

mk · (xk+1 − xk), U(f, P ) =
n−1
∑

k=0

Mk · (xk+1 − xk),

where mk = inf {f(x) : xk ≤ x ≤ xk+1} and similarly Mk = sup {f(x) : xk ≤ x ≤ xk+1}.

• If the function f is non-negative on [a, b], then the Darboux sums represent sums of
areas of rectangles. These provide approximations for the area under the graph of f .
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Theorem 10.3 – Darboux sums and refinements

Suppose that f : [a, b] → R is bounded. Given any partition P of the interval [a, b] and
any refinement Q of this partition, one must then have

L(f, P ) ≤ L(f,Q), U(f,Q) ≤ U(f, P ).

Thus, more refined partitions give rise to larger lower sums but smaller upper sums.

Proof. We only prove the first inequality, as the second inequality is similar. It suffices to
treat the case that Q contains just one more point than P does. If the result holds in that
special case, then lower sums increase every time a point is introduced, so the general case
follows as well. Let us then concentrate on the special case

P = {x0, x1, . . . , xn}, Q = {x0, x1, . . . , xi, y, xi+1, . . . , xn}.

According to Definition 10.2, the lower Darboux sum L(f, P ) is given by

L(f, P ) =
n−1
∑

k=0

mk(xk+1 − xk), mk = inf {f(x) : xk ≤ x ≤ xk+1}.

On the other hand, the corresponding expression for the lower Darboux sum L(f,Q) is

L(f,Q) =
i−1
∑

k=0

mk(xk+1 − xk) + α(y − xi) + β(xi+1 − y) +
n−1
∑

k=i+1

mk(xk+1 − xk),

where α = inf {f(x) : xi ≤ x ≤ y} and β = inf {f(x) : y ≤ x ≤ xi+1}. Recall Theorem 2.12
which asserts that inf B ≥ inf A whenever B ⊆ A. This gives α, β ≥ mi and thus

L(f,Q) ≥
i−1
∑

k=0

mk(xk+1 − xk) +mi(y − xi) +mi(xi+1 − y) +
n−1
∑

k=i+1

mk(xk+1 − xk)

=
i−1
∑

k=0

mk(xk+1 − xk) +mi(xi+1 − xi) +
n−1
∑

k=i+1

mk(xk+1 − xk).

Since the last expression is merely L(f, P ), we get L(f,Q) ≥ L(f, P ), as needed. �

Definition 10.4 – Riemann integrability

Suppose that f : [a, b] → R is bounded and consider the expressions

L(f) = sup {L(f, P ) : P is a partition of [a, b]},

U(f) = inf {U(f, P ) : P is a partition of [a, b]}.

If it happens that L(f) = U(f), we say that f is integrable on [a, b] and we write

∫ b

a

f(x) dx = L(f) = U(f).
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Example 10.5 Consider a constant function f : [a, b] → R defined by f(x) = c for all x.
Given any partition P = {x0, x1, . . . , xn} of the interval [a, b], one has

mk = inf {f(x) : xk ≤ x ≤ xk+1} = c,

Mk = sup {f(x) : xk ≤ x ≤ xk+1} = c

for each 0 ≤ k ≤ n− 1. In particular, the lower and upper Darboux sums are equal and

L(f, P ) = U(f, P ) =
n−1
∑

k=0

c(xk+1 − xk) = c(xn − x0) = c(b− a).

Since this is true for all partitions P , we conclude that L(f) = U(f) = c(b− a). �

Example 10.6 We show that the function f is not integrable on [a, b] when a < b and

f(x) =

{

1 if x ∈ Q

0 if x /∈ Q

}

.

Given any partition P = {x0, x1, . . . , xn} of the interval [a, b], it is easy to see that

mk = inf {f(x) : xk ≤ x ≤ xk+1} = 0,

Mk = sup {f(x) : xk ≤ x ≤ xk+1} = 1

for each 0 ≤ k ≤ n− 1. This is because each interval [xk, xk+1] contains both a rational and
an irrational number. In particular, L(f, P ) = 0 for every partition P and L(f) = 0. On
the other hand, the upper Darboux sums are given by

U(f, P ) =
n−1
∑

k=0

(xk+1 − xk) = xn − x0 = b− a.

This implies that U(f) = b− a as well. Thus, L(f) 6= U(f) and f is not integrable. �

Theorem 10.7 – Lower and upper Darboux sums

Given a bounded function f : [a, b] → R, one always has L(f) ≤ U(f).

Proof. Consider any partitions P,Q of [a, b]. Since their union R = P ∪ Q is a refinement
of both partitions, it follows by Theorem 10.3 that

L(f, P ) ≤ L(f,R) ≤ U(f,R) ≤ U(f,Q).

In other words, L(f, P ) ≤ U(f,Q) for any partitions P,Q of [a, b]. This makes L(f, P ) a
lower bound for the set of all upper Darboux sums which implies that

L(f, P ) ≤ inf {U(f,Q) : Q is a partition of [a, b]} = U(f).

Thus, U(f) is an upper bound for the set of all lower Darboux sums and L(f) ≤ U(f). �
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Theorem 10.8 – Riemann integrability condition

Suppose that f : [a, b] → R is bounded. To say that f is integrable on [a, b] is to say
that given any ε > 0, there exists a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε.

Proof. Suppose first that f is integrable and let ε > 0 be given. By definition, one has

L(f) =

∫ b

a

f(x) dx = sup {L(f, P ) : P is a partition of [a, b]}.

Since L(f)− ε
2
is smaller than this supremum, there exists a partition P of [a, b] such that

L(f)−
ε

2
< L(f, P ).

A similar argument applies for upper Darboux sums. More precisely, f is integrable and

U(f) =

∫ b

a

f(x) dx = inf {U(f,Q) : Q is a partition of [a, b]}.

Since U(f) + ε
2
is larger than this infimum, there exists a partition Q of [a, b] such that

U(f) +
ε

2
> U(f,Q).

The refinement R = P ∪Q then satisfies L(f, P ) ≤ L(f,R) and U(f,R) ≤ U(f,Q), so

U(f,R)− L(f,R) ≤ U(f,Q)− L(f, P ) < U(f) + ε− L(f) = ε.

Conversely, suppose that the given condition holds. To show that f is integrable, we
need to show that L(f) = U(f). If that is not the case, then we must have

ε = U(f)− L(f) > 0.

According to the given condition, there exists a partition R of [a, b] such that

U(f,R)− L(f,R) < U(f)− L(f).

We now rearrange terms and recall the definition of L(f) to conclude that

U(f,R) + L(f,R) ≤ U(f,R) + sup {L(f, P ) : P is a partition of [a, b]}

= U(f,R) + L(f)

< U(f) + L(f,R).

This shows that U(f,R) < U(f). On the other hand, U(f) is defined as the infimum of all
possible upper sums U(f,R). We must thus have U(f,R) ≥ U(f), a contradiction. �
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Example 10.9 Consider the function f : [0, 1] → R defined by f(x) = x. To show that f is
integrable on [0, 1], we introduce the partition Pn = {0, 1

n
, 2

n
, . . . , 1}. This consists of n + 1

equally spaced points. Letting xk =
k
n
for each 0 ≤ k ≤ n, one finds that

mk = inf {f(x) : xk ≤ x ≤ xk+1} = xk,

Mk = sup {f(x) : xk ≤ x ≤ xk+1} = xk+1

for each 0 ≤ k ≤ n− 1. In view of the definition of Darboux sums, we thus have

U(f, Pn)− L(f, Pn) =
n−1
∑

k=0

(Mk −mk) · (xk+1 − xk)

=
n−1
∑

k=0

(xk+1 − xk) · (xk+1 − xk) =
n

n2
=

1

n
.

Since this expression approaches zero as n → ∞, we conclude that f is integrable. �

11 Properties of integrals

Theorem 11.1 – Continuous implies integrable

Suppose that f : [a, b] → R is continuous. Then f is integrable on [a, b].

Proof. The interval [a, b] is compact by Theorem 9.9 and f : [a, b] → R is continuous, so f
is bounded by the Extreme Value Theorem and uniformly continuous by Theorem 9.12. To
show that f is integrable, let ε > 0 be given. Then there exists some δ > 0 such that

|x− y| < δ =⇒ |f(x)− f(y)| <
ε

b− a
(11.1)

for all x, y ∈ [a, b]. Consider a partition P = {x0, x1, . . . , xn} consisting of equally spaced
points. Since f attains both a minimum and a maximum value on each [xk, xk+1], one has

mk = inf {f(x) : xk ≤ x ≤ xk+1} = min {f(x) : xk ≤ x ≤ xk+1} = f(yk),

Mk = sup {f(x) : xk ≤ x ≤ xk+1} = max {f(x) : xk ≤ x ≤ xk+1} = f(zk)

for some points yk, zk ∈ [xk, xk+1]. If we now assume that n is sufficiently large, then

|zk − yk| ≤ |xk+1 − xk| =
b− a

n
< δ

for each 0 ≤ k ≤ n− 1. According to equation (11.1), this also implies that

Mk −mk = f(zk)− f(yk) = |f(zk)− f(yk)| <
ε

b− a
.

Thus, the lower and upper Darboux sums that correspond to the partition P satisfy

U(f, P )− L(f, P ) =
n−1
∑

k=0

(Mk −mk) · (xk+1 − xk) <
n−1
∑

k=0

ε

b− a
·
b− a

n
= ε.

This verifies the Riemann integrability condition and it also completes the proof. �
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Theorem 11.2 – Additivity of integrals

Suppose that a < c < b. If a function f is integrable on both [a, c] and [c, b], then the
function f is integrable on [a, b] and one has the identity

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

Proof. Let ε > 0 be given. Then there exists a partition P1 of [a, c] such that

U(f, P1)− L(f, P1) < ε/2

and there similarly exists a partition P2 of [c, b] such that

U(f, P2)− L(f, P2) < ε/2.

The union P = P1 ∪ P2 is then a partition of [a, b] which is easily seen to satisfy

L(f, P ) = L(f, P1) + L(f, P2),

U(f, P ) = U(f, P1) + U(f, P2).

In particular, one has U(f, P )− L(f, P ) < ε and f is integrable on [a, b] as well.
Finally, we prove the identity for the integral of f . Given any partition P1 of [a, c] and

any partition P2 of [c, b], the definition of the integral gives

L(f, P1) ≤

∫ c

a

f(x) dx ≤ U(f, P1), L(f, P2) ≤

∫ b

c

f(x) dx ≤ U(f, P2).

Once we now add these equations together, we may conclude that

L(f, P ) ≤

∫ c

a

f(x) dx+

∫ b

c

f(x) dx ≤ U(f, P ),

where P = P1 ∪ P2 is a partition of [a, b]. On the other hand, we must also have

L(f, P ) ≤

∫ b

a

f(x) dx ≤ U(f, P )

by the definition of the integral. As we have already seen, the left hand side L(f, P ) and
the right hand side U(f, P ) can be made arbitrarily close to one another. Thus, any two
expressions that lie between them must be equal and the proof is complete. �

Theorem 11.3 – Sums of integrable functions

Suppose that f, g are integrable on [a, b]. Then f + g is also integrable on [a, b] and

∫ b

a

[f(x) + g(x)] dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.
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Proof. We need to relate the lower/upper Darboux sums for the functions f, g with the
corresponding ones for their sum f + g. In order to do this, we shall first show that

inf {f(x) + g(x) : x ∈ A} ≥ inf {f(x) : x ∈ A}+ inf {g(x) : x ∈ A}, (A1)

sup {f(x) + g(x) : x ∈ A} ≤ sup {f(x) : x ∈ A}+ sup {g(x) : x ∈ A}. (A2)

These identities are valid for any nonempty set A ⊆ [a, b]. In fact, each x0 ∈ A satisfies

f(x0) ≥ inf {f(x) : x ∈ A}, g(x0) ≥ inf {g(x) : x ∈ A}

and one may simply add these equations together to conclude that

f(x0) + g(x0) ≥ inf {f(x) : x ∈ A}+ inf {g(x) : x ∈ A}.

Since the right hand side is a lower bound for all possible sums f(x0) + g(x0) with x0 ∈ A,
it is smaller than the greatest lower bound and (A1) follows. The proof of (A2) is similar.

We now use (A1)-(A2) along with the definition of Darboux sums to show that

L(f + g, P ) ≥ L(f, P ) + L(g, P ), (B1)

U(f + g, P ) ≤ U(f, P ) + U(g, P ) (B2)

for any partition P = {x0, x1, . . . , xn}. When it comes to lower Darboux sums, one has

L(f + g, P ) =
n−1
∑

k=0

inf {f(x) + g(x) : xk ≤ x ≤ xk+1} · (xk+1 − xk)

≥

n−1
∑

k=0

inf {f(x) : xk ≤ x ≤ xk+1} · (xk+1 − xk)

+
n−1
∑

k=0

inf {g(x) : xk ≤ x ≤ xk+1} · (xk+1 − xk)

because of (A1). This already establishes (B1), while the proof of (B2) is similar.
Next, we show that the function f + g is integrable. Let ε > 0 be given. Since f, g are

both integrable on [a, b], there exist partitions P,Q such that

U(f, P )− L(f, P ) < ε/2,

U(g,Q)− L(g,Q) < ε/2.

Consider their refinement R = P ∪Q. According to Theorem 10.3, this satisfies

U(f,R)− L(f,R) ≤ U(f, P )− L(f, P ) < ε/2,

U(g,R)− L(g,R) ≤ U(g,Q)− L(g,Q) < ε/2.

Once we now combine these inequalities with (B1) and (B2), we find that

U(f + g,R)− L(f + g,R) ≤ [U(f,R)− L(f,R)] + [U(g,R)− L(g,R)] < ε.
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This verifies the Riemann integrability condition, so f + g is integrable as well.
Finally, we establish the formula for the integral of f + g. On one hand, we have

L(f, P ) + L(g, P ) ≤ L(f + g, P ) ≤

∫ b

a

[f(x) + g(x)] dx

≤ U(f + g, P ) ≤ U(f, P ) + U(g, P )

by (B1), (B2) and the definition of the integral. On the other hand, we also have

L(f, P ) + L(g, P ) ≤

∫ b

a

f(x) dx+

∫ b

a

g(x) dx ≤ U(f, P ) + U(g, P )

by the definition of the integral. Now, the left hand side L(f, P ) + L(g, P ) and the right
hand side U(f, P ) + U(g, P ) can be made arbitrarily close to one another. Thus, any two
expressions that lie between them must be equal and the proof is complete. �

Theorem 11.4 – Multiples of integrable functions

Suppose that f is integrable on [a, b] and c ∈ R. Then cf is also integrable on [a, b] and

∫ b

a

[cf(x)] dx = c

∫ b

a

f(x) dx.

Proof. When c = 0, the result follows by Example 10.5 since cf is constant in that case.
Suppose now that c > 0. Given any partition P = {x0, x1, . . . , xn} of [a, b], one has

L(cf, P ) =
n−1
∑

k=0

inf {cf(x) : xk ≤ x ≤ xk+1} · (xk+1 − xk)

= c

n−1
∑

k=0

inf {f(x) : xk ≤ x ≤ xk+1} · (xk+1 − xk) = cL(f, P )

and similarly U(cf, P ) = cU(f, P ). To show that cf is integrable, let ε > 0 be given. Using
our assumption that f is integrable, one may find a partition P such that

U(f, P )− L(f, P ) < ε/c =⇒ U(cf, P )− L(cf, P ) < ε.

This implies that cf is integrable as well. In addition, the integral of cf is given by

∫ b

a

[cf(x)] dx = sup {L(cf, P ) : P is a partition of [a, b]}

= sup {cL(f, P ) : P is a partition of [a, b]}

because c > 0. Using the definition of the integral, we conclude that

∫ b

a

[cf(x)] dx = c sup {L(f, P ) : P is a partition of [a, b]} = c

∫ b

a

f(x) dx.
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The case c < 0 is somewhat different because inequalities are reversed upon multiplication
by a negative number. If it happens that c < 0, then our previous approach gives

L(cf, P ) =
n−1
∑

k=0

inf {cf(x) : xk ≤ x ≤ xk+1} · (xk+1 − xk)

= c
n−1
∑

k=0

sup {f(x) : xk ≤ x ≤ xk+1} · (xk+1 − xk) = cU(f, P )

and similarly U(cf, P ) = cL(f, P ). This still implies that cf is integrable because

U(cf, P )− L(cf, P ) = cL(f, P )− cU(f, P ) = |c| · [U(f, P )− L(f, P )].

To show that the formula for the integral of cf remains valid, we note that

∫ b

a

[cf(x)] dx = sup {L(cf, P ) : P is a partition of [a, b]}

= sup {cU(f, P ) : P is a partition of [a, b]}

as before. Since c < 0 in this case, however, the last equation gives

∫ b

a

[cf(x)] dx = c inf {U(f, P ) : P is a partition of [a, b]} = c

∫ b

a

f(x) dx

because the integral is defined in terms of both lower and upper Darboux sums. �

Theorem 11.5 – Integrals and inequalities

Suppose that f, g are integrable on [a, b] and that f(x) ≥ g(x) for all x ∈ [a, b]. Then

∫ b

a

f(x) dx ≥

∫ b

a

g(x) dx.

Proof. Consider the difference of the two functions h = f − g = f + (−g). Since f, g are
both integrable on [a, b], the same is true for h by the last two theorems and

∫ b

a

h(x) dx =

∫ b

a

[f(x)− g(x)] dx =

∫ b

a

f(x) dx−

∫ b

a

g(x) dx.

To prove the given inequality, we need to show that this expression is non-negative. Now,
let P = {x0, x1, . . . , xn} be a partition of [a, b] and consider the lower Darboux sum

L(h, P ) =
n−1
∑

k=0

mk(xk+1 − xk), mk = inf {h(x) : xk ≤ x ≤ xk+1}.

Since h(x) = f(x) − g(x) ≥ 0 for all x ∈ [a, b] by assumption, one has mk ≥ 0 for each k.

This implies that L(h, P ) ≥ 0 for any partition P and thus
∫ b

a
h(x) dx ≥ 0 as well. �


