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1 Introduction

• Syllabus
http://www.tcd.ie/Physics/undergraduate/mod physics/

• Summaries, diagrams, tables, etc.
http://www.tcd.ie/Physics/local/undergraduate/JS/

• Recommended books

Thermal Physics by Kittel and Kroemer, Freeman
Statistical Physics by Mandl, Wiley

1.1 Syllabus and Objectives

• Counting States in classical and quantum systems.

• Fundamental assumption of statistical physics; ensembles

• Model system of 2-state components.

• Twos systems in equilibrium: entropy, temperatures and chemical poten-
tial.

• Partition functions and their relation to thermodynamic quantities.

• Third Law of Thermodynamics.

• Fermi-Dirac and Bose-Einstein Statistics.

• Quasi-classical statistics: equipartition of energy

• Application of quantum statistics to photons, gases, and solids.

The main objective is to show how a simple assumption of equal statistical
weights allows the properties of individual quantum particles to be combined
together properly to calculate macroscopic thermodynamic quantities, to com-
pare with experiment.
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1.2 Classical Thermodynamics

Classical Thermodynamics:

• Mathematical developement of experimentally based laws

• Consequences may be tested experimentally

• Power lies in making wide-ranging deductions of great generality

Limits:

• Origins of laws?

• Macroscopic events only.

• No a priori calculations of the properties of a system.

Example:
Equation of state of system which relates macroscopic variables and
distinguishes one system from another.

f(P, V, T ) = 0 (derived from experiment)

Ideal gas law: PV = nRT (where N = number of moles)

R = 8.314JK−1mol−1 (determined from experiment)

Virial:
PV = A+ B

V + C
V 2 + . . .

Where A, B, C... are (temperature dependant) virial coefficients determined
by experiment.

1.3 Statistical Thermodynamics

• Assumes atomic nature of matter.

• Deduces macroscopic properties from atomic properties.

• ∼ 1023 particles � Statistical Methods.

• The behaviour of collections of particles can be predicted accurately
without knowing the detailed behaviour of any one particle.

• Quantum systems conceptually easier. Postulate of quantum mechanics
and one extra postulate about probability � Function with the same
properties as entropy.

Main Problem: Computationally Complex
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2 Foundations

2.1 Concepts and terminology.

Macrostate

• Defined when we know the contraining parameters (P, V, T...) of a
system.

• Time independant when the system is in thermal equilibrium.

Microstate

• Quantum Microstate

– Each quantum state is a seperate and distinct microstate of the
system.

• Classical Microstate

– Conceptually more difficult, but may be easier to calculate using
classical mechanics

– Uses phase space of position q, and momentum p, coordinates.

– Microstate is Volume element in 6N-dimensional phase space of N
particles.

– As particles move, Hamilton’s equations describe motions:

q̇i = δH
δpi

ṗi = δH
δqi

H = T + V

T = Kinetic Energy, V= Potential Energy

• Liouville’s Theorem: Phase volume of particles is constant

We use the quantum approach in this course

Counting States

• Statistical thermodynamics needs to know the number of microstates in
the macrostate.

• Quantum microstates are discrete (e.g. particle in a box) and easy to
count.

Weakly Coupled Systems

(Solving the quantum mechanics problem)

• In an isolated system (total energy, volume, number of particles are
constant) Weak coupling � Energy levels of single particles are
effectively unchanged by weak interactions between particles, BUT, the
interactions is large enough for the system as a whole to come to a
common temperature.
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• This allows the quantum mechanical (QM) problem to be solved.

Example:
Gas of hydrogen molecules: QM can be used to calculate the electronic,
vibrational, rotational, and translational eigenvalues of the isolated hydrogen
molecule - the single particle states.

(Kittel calls these orbitals)

2.2 Counting the number of microstates in a macrostate

• Specify constraining parameters of macrostate.

• Determine single particle states.

• Determine whether particles are localised:

Localised � Distinguishable
e.g. Magnetic nuclei of atoms in solid
Weakly coupled (nuc-nuc � nuc-ext B)
Distinguishable (lattice sites can be labelled)

Non-localised � Indistinguishable
e.g. Gas molecules
Wavefunction of system then depends on whether particles are
Bosons or Fermions

2.3 Bosons and Fermions

• Two indistinguishable particles, 1 and 2, and two single particle states, a
and b: we have, say, φ a(1) and φ b(2).

• The system is weakly coupled, so the system wavefunction can be
written as :

ψ(1, 2) = φa(1)φb(2) (independent events)

OR

ψ(1, 2) = φa(2)φb(1) (indistinguishable)

• Quantum theory gives linear combination:

ψ(1, 2) = φa(1)φb(2)± φa(2)φb(1)
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Thus we have two situations:

For +
Symmetric with respect to particle exchange
ψBE(1, 2) = φa(1)φb(2) + φa(2)φb(1) = ψBE(2, 1)
Bose-Einstein statistics � Bosons

For -
Antisymmetric with respect to particle exchange
ψFD(1, 2) = φa(1)φb(2)− φa(2)φb(1) = −ψFD(1, 2)
Fermi-Dirac statistics � Fermions

• All particles are either Bosons or Fermions

• Any number of bosons, but only one fermion can occupy a sing particle
state. (Pauli exclusion principle)

• Total spin determines whither particles are bosons or fermions:

- Photon spin

- Electron spin

- Proton spin

- Neutron spin

• Bosons have integral spin:
4He atoms �

∑
spins = 3

• Fermions have half-integral spin:
3He atoms �

∑
spins = 2 1

2

2.4 Time averages and ensemble averages

Slide 3 (Some formatting problems here)
The large number of microstates accessible to the system are dealt with
statistically:
t1, t2, t3, . . . , tr are times of r successive observations of which microstate the
system is in; n(l) is number of times the system is found in state l.
The probability of finding the system in state l is:

P(l) = n(l)
r (r � ∞)(�

∑
lP (l) = 1because

∑
ln(l) = r)

The average of some physical parameter of the system, < A >, is

(1)
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To get this properly, observations must be on a time scale long in comparison
with the time the system takes to randomize, the Relaxation Time of the
system (which varies with A).

• The ensemble or thermal average, is the average over the large number of
replicas of the system

• A replica is a microstate of the system

• One replica is required for each microstate

• The collection of replicas is an ensemble

• The ensemble is used to determine P (l) — easier than the time method,
but apparently equivalent

Ensemble averages produce results which agree with experiment

2.5 Fundamental assumption of Statistical
Thermodynamics

A system in thermal equilibrium is equally liekly to be in any of
the microstates accessible to it:
Equal a priori probabilities.
(Each microstate has the same statistical weight)

2.6 Summary

• A macrostate is defined when we know the constraining parameters
p, V, T, . . . of the system

• A (quantum) microstate is a quantum state of the system

• Statistical mechanics is based on counting the microstates that make up
a macrostate

• Each microstate is given the same statistical weight (equal a priori
probabilities)

• An ensemble is the collection of microstates (replicas) of the system

• Ensembles enable microstates to be counted

• Ensembles averages are equivalent to time averages

3 A simple model system

• Set of distinct elementary magnets: spin 1
2 particle, spin angular

momentum h̄
2 , at N fixed points on a line � localised, distinguishable.

• Magnetic moment µ′, where µ′ = eh̄
2m , the Bohr magneton.

• No interaction between spins, no external magnetic field.
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• Each spin has two distinct possible vaules, ± 1
2 , giving magnetic moment

+µ′ or −µ′ (spin up or spin down)

Example

N = 3 � 23 = 8 possible arrangements of spin (microstates)
M (total magnetic moment, macrostate.)

uuu +3µ′

duu udu uud +µ′ (3 + 1) = 4 distinct values of M
udd dud ddu −µ′

ddd −3µ′

• As Particles are localised, duu =/= udu, etc.

• Each arrangement is a separate and distinct microstate of the system

• From the fundamental assumption, the probability of finding a given
microstate is 1

8

• We cam define a generating function by (u+ d)3 = uuu+. . . +ddd.

Generalising:

– N Spins

– 2N distinct microstates

– Probability of finding any single state 1
2N

– Generating function (u+ d)N

– Total Magnetic moment of system, M, goes from +Nµ′ to -Nµ′ in
steps of 2µ′ by reversing a spin.

– M does not depend on arrangement on line � M has (N+1) distinct
values.

– The macrostate of the system is described by the value of M, which
is a macroscopic parameter.

– Note that the magnetisation, which is more genereally used in
describing macroscopic magnetic systems, is just the total magnetic
moment per unit volume, M

V

3.1 Finding the number of microstates in the
macrostate

Slide 5 from handout

– With no applied magnetic feild, all microstates have the same energy
� degenerate (QM)

– If a field B is applied, the total potential energy of the system,
U(m) = −MB = −2mµ′B (so the system is more stable if spins are
aligned parallel to the field, ”spin up”.)
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– The overall degeneracy is lifted, but the states of the same m are
still degenerate

– Negative energy systems are stable, Systems look for the least
amount of energy.

Example

N=4 (even)
Ω(4,±2) = 1
Ω(4,±1) = 4
Ω(4, 0) = 6

Thus, with no external magnetic field, the state with m=0;

– Is the most probable macrostate

– Can be in any of 6 microstates

– Therefore is the least well defined, has least known about it, is the
most random

3.2 The shape of Ω(N,m) for large N(∼ 1016)

– The mathematical derivation is set out in JS3002A.

– We take the natural logarithm to convert products to sums

– We split out constant terms

– We recognise that N � m� 1

We obtain lnΩ ≈ lnΩ(N, 0)− 2m2

N

and Ω(N,m) ≈ Ω(N, 0)exp(− 2m2

N ) (3)
where Ω(N, 0) = N !

( N
2 )!

– This is a Gaussian distribution with a maximum at m=, and the
most probable macrostate has an equal number of up and down
spins.

– Ω(N,m) is an extremely sharply peaked function (width ∼
√
N)

Slide 7 Handout
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4 Entropy and temperature

The objective is to develope statistical expressions for entropy and
temperature.

4.1 Entropy

(Diagram)

– Consider two systems of fixed volume in thermal contact � energy is
exchanged

– Individual systems cannot exchange particles (thermally conducting
wall separates systems)

– Combined system is isolated � total energy of combined system is
constant: U = U1 + U2 = constant.

– Every accessible state of the combined system is equally probable �
most probable division of energy is that fir which the combined
system has the maximum number of accessible states.

Take systems (1) and (2) to be model spin systems in thermal contact in
a magnetic field:

– The number of spins, N1, N2 is constant

– The spin excess 2m1, 2m2 is variable

– The energy U1(m1), U2(m2) is variable

[U(m) = −2mµ′B]

– For the combined system, we have some constraints:

∗ N = N1 +N2 = constant

∗ U(m) = U1(m1) + U2(m2) = constant

∗ 2m = 2m1 + 2m2

– The number of states of the combined system, for given m1 and m2

is:
Ω1(N1,m1)Ω2(N2,m2)

– But m2 = m−m1 and so we can sum over m1 to count all the states
for a given total energy:

Ω(N,m) =

1
2N1∑

m1=− 1
2N1

Ω1(N1,m1)Ω2(N2,m2)

Where Ω(N,m) is the number of states of the combined system.
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– For some value of m1, say m̄1, the product will have a maximum
value. for a large system, we can show that this maximum is so large
that the statistical properties are completely dominated by this most
probably product.

Ω(N,m) ≈ Ω1(N1, m̄1)Ω2(N2,m− m̄2) = Ωmax

– This is all we have to determine. To ensure that the combined
system is large enough, we let one component be a resevoir or heat
bath. (Arbitrarily large system whose total energy is effectively
constant, despite energy exchange with the other component of the
total system.)

In this case, the average of a macroscopic physical quantity is
accurately determined by the microstates of the most probable
product.

– For our model system, Ωmax ∼ 2N and correction term

– So if N = 2N ∼ 1030, the correction term is 1 part in 1028

– We now generalise using internal energy U, and differentiating to
find the maximum.

– Let Ω(U,N, V ) = Ω1(U1, N1, V1)Ω2(U2, N2, V2) where total volume
and particle number are fixed.

For maximum:

dΩ = 0 = (∂Ω1

∂U1
) |V1,N1

Ω2dU1 + (∂Ω2

∂U2
) |V2,N2

Ω1dU2

and dU = 0 = dU1 + dU2

� 1
Ω1

(∂Ω1

∂U1
) | V1, N1 = 1

Ω2
(∂Ω2

∂U2
) | V2, N2

� (∂lnΩ1

∂U1
) | V1, N1 = (∂lnΩ2

∂U2
) | V2, N2

Now we recall the central equation of thermodynamics.
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