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Abstract

The aim of this experiment was to examine the crystal structure of various atoms and molecules
using x-ray diffraction. The lattice constants and miller indices were found for each crystal.

Crystal Miller Index (hkl) Lattice Constant (Å)

NaCL (100) 5.61±.05Å
LiF (100) 4.06±.05Å
GaP (111) 5.45±.07Å

Si (100) 5.42±.07Å
Si (111) 5.52±.08Å

Introduction and Basic Theory

A crystalline solid is a material which is composed of basis of atoms or molecules that are
packed in an orderly and repeating lattice. The structure of these crystals can be quite varied,
and there are many different types of lattice. As the wavelength of x-rays is comparable to the
spacing of atoms in a solid (∼0.1nm) a crystal acts as a diffraction grating. Using the resulting
diffraction pattern it is possible to analyse even complex crystal structures.

For this experiment, the Bragg method was used. If the structure as shown in Fig 1 is
considered, where x-rays of wavelength λ are incident on parallel atomic planes of spacing d.
It is clear that the rays will have a path difference of dsinθ. As such, constructive interference
will occur between beams diffracted from successive layers when :

2dSinθ = nλ (n = 1, 2, 3 . . .) (1)

Figure 1: Bragg Diffraction

This is known as Bragg’s law. If a crystal is scanned using x-ray diffraction, the intensity
peaks will give values of θ. Using that, d can be found if λ is known.

In addition, the relative intensities of the peaks can give more information. If a wave is
scattered by an atom from some referenec point O, the incident and scattered waves can be
treated as plane waves. As such, the phase difference between the beams at a detector point D
is given by:
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∆φ =
2π

λ
(x1 + x2) = ∆k · rn (∆k = k′ − k) (2)

k′ and k are the wavevectors of the scattered and incident waves.
The amplitude at D of the wave scattered from atom n is therefore proportional to:

An = fne
−∆k·rn (3)

fn is known as the atomic form factor. If rl is the position of the lattice point with which
atom n is associated and rp is the position of the atom relative to the lattice point, it follows
that:

A =
∑
l

e−i∆k·rl
∑
p

fpe
−i∆k·rp (4)

The first term determines the directions for which diffractions occurs, this is essentially
Bragg’s Law. The second term determines the intensities of the diffracted beams. This is
called the structure factor, F. This term can also be expressed in terms of miller indices (hkl)
and atomic basis coordinates (xp, yp, zp):

F =
∑
p

fpe
−i2π(hxp+kyp+lzp) (5)

From this, it is possible to derive useful constraints for different lattice shapes:

Lattice Condition Fhkl
BCC lattice hkl all odd 0
FCC lattice hkl all mixed 0

hkl unmixed 4[fa + f2e
πi(h+k+l)]

Rock Salt hkl all even 4(f1 + f2)
hkl all odd 4(f1 − f2)
hkl mixed 0

Zinc Blend h+ k + l = 4n
√

16(f1 + f2)2

h+ k + l = 2(2n+ 1)
√

16(f1 − f2)2

hkl all odd
√

16(f 2
1 + f 2

2 )

The points at which Fhkl = 0 are called systematic absenses as there will be no intensity
peak at those points.

It is also possible to derive a useful formula that can be used to compare the ratios of sin2θ
values:

d =
a√

h2 + k2 + l2

λ = 2a

√
1

h2 + k2 + l2
sinθ

sin2θ =
λ2

4a2
(h2 + k2 + l2)

As h,k,l must be integers, the values of sin2θ must all have a common multiplier. By
comparing the ratios of the sin2θ values for different peaks, and by knowing which combinations
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are disallowed for each structure it is now possible to find the miller indices and the atomic
lattice spacing of the sample crystals.

Experimental Setup

Initially, a crystal of NaCl was placed in the X-Ray diffractor as shown in Fig 2. A tube voltage
of 35kV amd a current of 1mA was used, and the count rate over 5s was found over steps of
θ = 0.1◦ Using the coupled mode, the detector was rotated through 2θ and the sample was
rotated through θ for the Bragg condition to apply. The count rate and angle were recorded
by the computer and graphed. The process was repeated for four other crystals; LiF, GaP and
two different Si crystals.

Figure 2: Bragg Diffraction
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Results

In the following graphs, the kα peaks are given positive integer values and the kβ peaks are
given negative integer values for clarity.

NaCl

Figure 3: NaCl: Intensity vs angle

kα peaks (◦) sinθ sin2θ
6.5 0.113 0.0129
13.0 0.225 0.0506
19.8 0.339 0.1147
kβ peaks (◦) sinθ sin2θ
7.3 0.127 0.0161
14.7 0.254 0.0644
22.3 0.379 0.1440

The ratio of the sin2θ values corresponds to 1:4:9 meaning the crystal has (100) miller index.

(This is also equivalent to a (010) or a (001) index.) A graph of n vs 2sin(θ)
λ

was then plotted
to find the spacing between the atomic planes:
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Figure 4: NaCl: n vs 2sin(θ)
λ

The spacing d is the slope of the graph. In this case it was the average of the two slopes,
represented by the kα and kβ peaks. As the crystal has the rock salt structure, we have a = 2d
and as such, the atomic lattice constant is 5.61Å The error is ±0.05Å. This was found using
analytical methods.

The method is the same for the other crystals.
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LiF

kα peaks (◦) sinθ sin2θ
8.9 0.155 0.024
18.1 0.311 0.097
27.9 0.468 0.219
kβ peaks (◦) sinθ sin2θ
10.0 0.174 0.030
20.5 0.350 0.123
31.7 0.525 0.276

Figure 5: LiF: n vs 2sin(θ)
λ

Ratio : 1:4:9
Miller Indices: (100)
a = 4.03± 0.05Å

6



GaP

kα peaks (◦) sinθ sin2θ
5.7 0.099 0.010
11.5 0.201 0.039
17.5 0.315 0.090
23.7 0.414 0.162
kβ peaks (◦) sinθ sin2θ
6.5 0.113 0.013
13.1 0.227 0.051
19.8 0.339 0.115
26.8 0.451 0.203

Figure 6: GaP: n vs 2sin(θ)
λ

Ratio : 3:12:27
Miller Indices: (111)
As GaP has the Zinc Blend structure and the miller indices are (111) we have a =

√
3d instead.

a = 5.45± 0.07Å
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Si(100)

kα peaks (◦) sinθ sin2θ
13.5 0.233 0.054
27.8 0.466 0.218
44.4 0.799 0.489
kβ peaks (◦) sinθ sin2θ
15.2 0.262 0.069
31.6 0.524 0.275
51.7 0.785 0.616

Figure 7: Si(100): n vs 2sin(θ)
λ

Ratio : 1:4:9
Miller Indices: (10)
As Si has the diamond structure and the miller indices are (100) we have a = 4d.
a = 5.42± 0.07Å
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Si(111)

kα peaks (◦) sinθ sin2θ
5.5 0.096 0.009
17.3 0.297 0.088
23.5 0.399 0.159
30.0 0.500 0.25
kβ peaks (◦) sinθ sin2θ
6.2 0.108 0.012
19.6 0.335 0.113
26.6 0.448 0.200
33.2 0.548 0.299

Figure 8: Si(111): n vs 2sin(θ)
λ

Ratio : 3:27:54:81
Miller Indices: (111)
Si has the diamond structure and the miller indices are (111) so we have a =

√
3d.

a = 5.52± 0.08Å

9



Conclusion

While in theory, Bragg Diffraction may be a very simple model that doesn’t account for many
complexities, it still provides very accurate results. All values found for the lattice constant
using this method were correct to within a relatively small margin of error. (∼ 5%)

The biggest problem that was encountered during the experiement was the fact that the
number of diffraction peaks found was quite small. As the intensity diminished quite rapidly as
θ increased, noise in the measurement ensured any peaks after the 3rd or 4th were unreadable.
It is possible that the accuracy could be improved if the noise level could be reduced somewhat,
possibly by taking more time to measure at higher θ

The errors in this experiment were quite small, the main source of error being the fact that
0.1◦ was the smallest possible step. As the peaks were well defined, there was no need to take
errors in the intensities into account.
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