9 Red-Black (search) trees

9.1 Definition of redblack trees

Bayer (1972), also Guibas and Sedgewick (1978). See Wikipedia for later improvements.

There are ways of keeping a binary search tree sufficiently well balanced so that the worst-case cost of search, insert, and delete, is $O(\log n)$ (in a tree with n nodes): AVL trees, 2/3-trees, for example, but we focus on red-black trees, which seem to be the best.

A red-black tree is a binary tree in which every node has a colour, red or black, with the following two properties.

No double red: every red node has a black parent.

Rank balancing: for every node v, for every leaf descendant x of v, the path from v to x in the tree contains the same number of black nodes. This number is called the rank of v.

Rank balancing can be introduced another way.

Definition of rank(v):

maximum rank of its children if v is red 1 + maximum rank of its children if v is black

and

Balancing:

both children of v have the same rank.

We write 'both children' on the understanding that if one or both children are missing then they are treated as if their ranks were zero.

9.2 Depth of a red-black tree

(9.1) Lemma Let v be a node in a red-black tree. If v has rank k, then it has at least $2^k - 1$ black descendants.¹

Proof. By an inductive argument. If u is a leaf, then either it is red with rank 0 and $2^0 - 1$ black descendants, or it is black with rank 1 and $2^1 - 1$ black descendants.

Induction: Suppose that v has one child u or two children u and w. If v has only one child, u, say, then u is red and v is black with rank 1 and $2^1 - 1$ black descendants.

If v has two children u and w, then by rank balancing they have the same rank ℓ . If v is red then v has rank ℓ and it has at least $2(2^{\ell}-1)$ black descendants (induction) which is at least $2^{\ell}-1$ since the latter is nonnegative.

If v is black then it has rank $\ell+1$ and each child has at least $2^{\ell}-1$ black descendants; since v is also black, it has at least $2^{\ell+1}-1$ black descendants, as required.

(9.2) Lemma Let T be a nonempty red-black tree whose root has rank k. Then T has height at most 2k.

¹This corrects an error in the notes.

²Another error corrected.

Proof. Let u be any node in T, and let r be its rank. Claim that the height of u is at most 2r.

Consider a *longest* path from u to a a leaf descendant x. This is a sequence of nodes; let R be the subsequence of red nodes and B the subsequence of black nodes. Let R' be the subsequence of red nodes *excluding* u if u is red. Then for every node v in R' its parent is in B, so $|R'| \leq |B| = r$. Therefore $|R| \leq r + 1$ and the path contains at most 2r + 1 nodes. The number of nodes in the path, minus 1, is the height of u, and is at most 2r. Or the tree has height at most 2k.

(9.3) Corollary A red-black tree with n nodes has height $O(\log n)$.

Proof. Let h be the height of T and k the rank of its root.³ T has at least $2^k - 1$ black nodes,⁴ so therefore

$$2^k - 1 \le n$$

$$2^k \le n + 1$$

$$k < \le \log_2(n+1)$$

$$h \le 2k \le \log_2(n+1)$$

9.3 Operations on red-black search trees

A red-black search tree is a red-black tree whose nodes carry sortable keys in ascending order. Operations search, insert, and delete follow the pattern for general binary search trees, but insertion will usually lead to a *double red* situation in which exactly one node has a red parent, or a *rank deficit* situation in which exactly one node has a sibling of different rank.

Searching is $O(\log n)$. Procedure to fix double red and rank deficit are illustrated below. They also are $O(\log n)$.

9.4 Rotation

In summary, a red-black tree supports search, insert, and delete, in time $O(\log n)$. The fix double red and fix rank deficit procedures involve

- Promotion: change red nodes to black
- Demotion: change black nodes to red
- Rotation: as illustrated. The management of colours is a separate issue, but the main point is that all the actions except promotion or demotion involve one or two rotations, and rotations preserve inorder.

 $^{^3}$ Possibly T is empty, but that is trivial.

⁴Another correction,

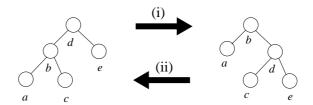


Figure 1: Rotation: (i) rotate left child b up; (ii) rotate right child d up.

9.5 Fix double red

Generally, p will point to a red node, and it will have a red parent, though later on this may not be true.

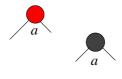
In the simplest case p points to a red root with no parent.

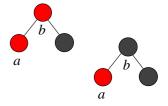
Case: root a is red.

Make it black and stop.

Case: red parent b is root.

Make it black and stop.





Case: p points to a red node a, red parent b, black grandparent d, red sibling e of b. 'Promote': Make b and e black and d red, let p = d, and continue.

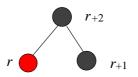
Case: p points to a red node a whose rank is r, with various other nodes as shown. Rotate b upwards and change the colours as shown. The problem is fixed.

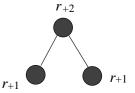
Case: p points to d as shown. Rotate d upwards, and rotate it upwards again to obtain the layout shown. Adjust the colours as shown. The problem is fixed.

9.6 Fix rank deficit

Two siblings have different ranks, r and r + 1. In general we assume that p points to the deficient node, though initially the deficient node could be null.

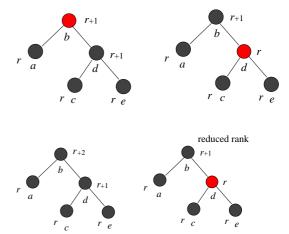
Case: The deficient node is red. Make it black and stop.





Case: the deficient node a is black, with red parent b and black sibling d both of whose children are null or black. Make d red and b black and stop.

Case: p points to the deficient node a which is black, with black parent b and black sibling d both of whose children are null or black. **Demote:** make d red and continue with p pointing to b (whose rank has dropped by 1).

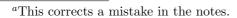


In the later figures, colours green and blue are used where both red and black are possibilities.

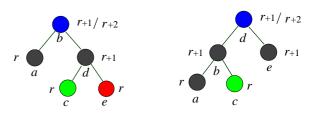
Case: p points to a black node a, its sibling d is also black, and the child e of d, which is more distant from a, is red. Rotate d upwards and adjust the colours as shown. Done.

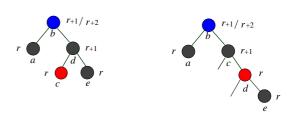
 a An error in the figure, the new rank of b, is corrected.

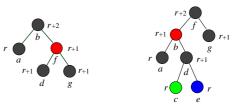
Case: p points to a black node a, its sibling d is also black, the child c of d, which closer to a, is red, and its sibling e is null or black. Rotate d upwards, and adjust the colours as shown. The left child of d after rotation was the right child of c before rotation and is black, so the no-double-red condition holds. There is still a rank deficit at a, but the altered tree fits the previous case and is corrected in one step. a



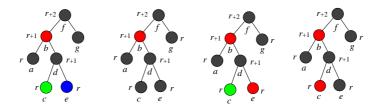
Case: p points to a black node a, and its sibling f is red. Rotate f upwards and adjust colours as shown. The node a is still deficient, but the cases raised have already been dealt with; they depend on the colours of the children c and e of d.







Here are the three different possibilities depending on the colours of c and e:



9.7 Join and split

Join. Given red-black search trees T_1, T_2 , and a key x, where the keys in T_1 are less than x and those in T_2 are greater than x, it is possible to join T_1 , x, and T_2 into a single red-black search tree, in $O(\log n)$ operations.

Of course the trees T_1 and T_2 are lost.

This is the general idea.

- Create a new node N containing the key x. Let r_1 and r_2 be the ranks of T_1 and T_2 .
- If $r_1 = r_2$, then N will be the root of the new tree, black, with left and right subtrees T_1 and T_2 .
- If $r_1 < r_2$, go down the left branch of T_2 until a black node y of rank r_1 is found. Let z be the parent of y in T_2 . Make N red, give it left subtree T_1 and right child y, and make N the left child of z. This can create a double red; call fix double red.
- If $r_1 > r_2$: similar.

Split. Given a red-black search tree T and a key x occurring in T, it is possible in $O(\log n)$ operations to break up T into two search-trees, one, T_1 , containing all keys < x and the other, T_2 , containing all keys > x. (The key x is separated from these trees.)

Of course the structure of T is lost.

The idea is: suppose that N was the node containing x in the tree. Follow the path from N to the root, identifying subtrees to be added to T_1 and T_2 . This is somewhat tricky.

 T_1 and T_2 can be built by repeated joining.

This involves $O(\log n)$ join operations each costing $O(\log n)$.

However with care and ingenuity the split operation can be accomplished in $O(\log n)$ operations rather than $O((\log n)^2)$. It's somewhat complicated to accomplish and more complicated to analyse.