
MA U34605 Quiz 02 w/e 23/10/20
Answer any 3 questions. Submit them using the submit-work program as pdfs,

either handwritten and scanned, or typeset. They should be submitted before 1pm
on Tuesday 27 October. All questions carry 20 marks.

(1) As in the first quiz, there is some ambiguity in the word ‘sorted.’ How does this impact
on the use of search trees? There are reasons to consider this rather different from the earlier
question about binary search.

Answer
The difference is between ‘nondecreasing’ and ‘strictly increasing.’ Usually the ‘keys’ in binary
search trees are connected with other information, so it is usual that different nodes have dif-
ferent keys. However, searching on a key would still work in that if a key is stored in the tree
then a node is returned with that key, but which node is returned is a matter of chance.

(2) Sorting usually allows for the same key (or item) to have repetitions in the input, and
in the output. A method is stable if, when a key is repeated in the output, it is repeated in the
same order as in the input.

Is mergesort, defined by the code presented in the notes, stable? Give reasons.

Answer
Yes. It depends on the way merge is written and used. The way it is used, x[] and y are part
of the same array, and x comes before y.

The condition threeway(x[i],y[j])>0 means that x[i] is strictly greater than y[j], and
y[j] is ‘taken.’ Otherwise x[i] <= y[j] and x[i] is ‘taken.’ This means that relative order
is preserved where the values are equal.

(3) (Splay trees). Let T1 be a tree with p nodes, and T2 a tree with q nodes, with root x,
where x has no left child. Join the trees by making T1 the left subtree of x. Calculate the
change in potential.

Answer
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The only node whose rank is changed after the change is x. Before the change it was
log2(q/n). After, it is log2((p+ q)/n). The change in potential is log2((p+ q)/q).



(4) Here is one way — there might be better ways — to show that the IPL of a binary tree
is Ω(n log n). Note: n is always the number of nodes in the tree.

It is enough to assume that there exists a natural number d such that (i) all leaves are at
depths d or d+ 1, and (ii) there are 2d nodes at level d.

Prove that if T is any binary tree in which there is a node u with fewer than 2 children,
and there is a leaf v such that depth(v) - depth(u) > 1, then the tree can be altered, while
retaining the number of nodes, to get another tree with smaller IPL.

Answer

>= 2

move

The diagram shows what to do. A leaf node is illstrated, and a node with 0 or 1 children
whose depth is at least 2 less. The leaf can be moved, reducing its depth by at least 1, and
leaving the depths of other nodes unchanged.

Keep doing this as long as possible. Suppose that d+1 is the maximum depth of all nodes
in the tree. Every node at depth ≤ d− 1 has two children, since one cannot continue moving
nodes as discussed. There are 2d+1 − 1 nodes at depth ≤ d. There are at most 2d+1 at depth
d+ 1.

A crude lower bound on the IPL is d × 2d. Now 2d+2 − 1 ≥ n, so 2d ≥ (1 + log2 n)/4 and
d ≥ log2(n+ 1)− 2, so the ipl is at least

(

1 + log2 n

4

)

(log2(n+ 1)− 2)

which is Ω(n log n).

(5) Fix the double red illustrated, assuming that the whole tree fulfils the red-black condi-
tions everywhere else.

In your answer you should label the nodes a . . . h (in inorder), and show their ranks, given
that the lowest red node has rank r − 1.
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