MAU11S02 seventh Friday quiz, week 10 Friday 1/4/22 due 4pm Monday 4/4/22

Rules and procedures.

1. Attempt 3 questions. Only your first three answers will be marked. 2. Each question carries 20 marks, so the maximum quiz mark is 60. 3. If a particular method of solution is stipulated, you get no marks if you don't use it. 4. **Show all work.** No marks will be given for answers which do not show the calculations. 5. Your answers should be scanned and submitted to Blackboard as a 'Friday assignment.'

Question 1. Given independent random variables $X_1 \sim B(3,1/2)$ and $X_2 \sim B(3,3/5)$, calculate the probabilities $X_1 = x_1$ and $X_2 = x_2$, $0 \le x_1 \le 3$, $0 \le x_2 \le 3$.

Question 2. Calculate the probability distribution of the random variable $X_1 + X_2$.

Question 3. Here is the graph of a continuous distribution, whose pdf is formed of two quadratic curves, crossing the x-axis at -1 and 2 respectively, and with a common horizontal tangent at (0, h).

(i) What is h? (ii) Calculate the mean of the distribution.

Question 4. Suppose $X \sim N(2,9)$. Evaluate the following (*P* means probability). (i) $P(X \le 3)$. (ii) P(1 < X < 3). (iii) $P(X \ge 2)$. (iv) $P(-3 \le X \le -2)$. (v) $P((-3 \le X \le -2))$.

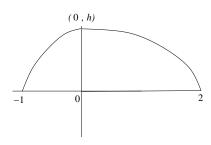


Figure 1: Question 3

Question 5. Here is a distribution with infinite discrete sample space 'parametrised' by α , where $0 < \alpha < 1$. Evaluate E(X), the mean of the distribution.

$$p_i = (1 - \alpha)\alpha^{i-1}, \qquad i = 1, 2, \dots$$

Hint: evaluate $\frac{d}{d\alpha} \frac{1}{1-\alpha}$.