MAU11S02 seventh Monday quiz, week 9 Monday 29/3/21 due 4pm Tuesday 6/4/21

Rules and procedures.

1. Attempt 3 questions. Only your first three answers will be marked. 2. Each question carries 20 marks, so the maximum quiz mark is 60. 3. If a particular method of solution is stipulated, you get no marks if you don't use it. 4. **Show all work.** No marks will be given for answers which do not show the calculations. 5. Your answers should be scanned and submitted to Blackboard as a 'Monday assignment.'

Remember, you must show all work.

Question 1. Let

$$A = \left[\begin{array}{rr} -5 & 2\\ -28 & 10 \end{array} \right]$$

(same as last week). Solve the differential equation

$$\frac{d}{dt} \left[\begin{array}{c} x \\ y \end{array} \right] = A \left[\begin{array}{c} x \\ y \end{array} \right],$$

with x = 2 and y = -1 at t = 0.

Answer.

$$A = \begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix}$$

$$e^{At} = \begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix} \begin{bmatrix} e^{2t} & 0 \\ 0 & e^{3t} \end{bmatrix} \begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix} =$$

$$e^{At}X_0 = \begin{bmatrix} 8e^{2t} - 7e^{3t} & -2e^{2t} + 2e^{3t} \\ 28e^{2t} - 28e^{3t} & -7e^{2t} + 8e^{3t} \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 18e^{2t} - 16e^{3t} \\ 63e^{2t} - 64e^{3t} \end{bmatrix}$$

Question 2. Check that your solution $X = [x(t), y(t)]^T$ to the differential equation satisfies the initial conditions (evaluate X(0)), and check that it satisfies the differential equation by evaluating dX/dt and AX.

Answer.

$$\begin{bmatrix} x(0) \\ y(0) \end{bmatrix} = \begin{bmatrix} 18 - 16 \\ 63 - 64 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \text{ correct}$$

$$\begin{bmatrix} dx/dt \\ dy/dt \end{bmatrix} = \begin{bmatrix} 36e^{2t} - 48e^{3t} \\ 126e^{2t} - 192e^{3t} \end{bmatrix}$$

$$\begin{bmatrix} -5 & 2 \\ -28 & 10 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -90e^{2t} + 80e^{3t} + 126e^{2t} - 128e^{3t} \\ -504e^{2t} + 448e^{3t} + 630e^{2t} - 640e^{3t} \end{bmatrix} = \begin{bmatrix} 36e^{2t} - 48e^{3t} \\ 126e^{2t} - 192e^{3t} \end{bmatrix}$$

correct.

Question 3. X and Y are independent random variables following the distribution B(3,1/2). Calculate the distribution of the pairs (X,Y) $(0 \le X,Y \le 3)$. Answer.

		P(Y)	1/8	3/8	3/8	1/8
		Y	0	1	2	3
P(X)	X					
$\frac{1}{8}$	0		$\frac{1}{64}$	$\frac{3}{64}$	$\frac{3}{64}$	$\frac{1}{64}$
$\frac{3}{8}$	1		$\frac{3}{64}$	$\frac{9}{64}$	$\frac{9}{64}$	$\frac{3}{64}$
3 8 3 8 3 8	2		$\frac{3}{64}$	$\frac{9}{64}$	$\frac{9}{64}$	$\frac{3}{64}$
$\frac{1}{8}$	3		$ \begin{array}{r} \hline 64 \\ 3 \\ \hline $	$ \begin{array}{r} \frac{3}{64} \\ \frac{9}{64} \\ \frac{9}{64} \\ \frac{3}{64} \end{array} $	$ \begin{array}{r} \frac{3}{64} \\ \frac{9}{64} \\ \frac{9}{64} \\ \frac{3}{64} \end{array} $	

Question 4. X and Y are independent random variables following the distribution B(3, 1/2). Calculate the distribution of the random variable X + Y.

Answer. Take the totals along the upper diagonals, from 0 to 6.

X + Y	0	1	2	3	4	5	6
			$\frac{15}{64}$	$\frac{20}{64}$		$\frac{6}{64}$	$\frac{1}{64}$

Question 5. Three (independent) trials are made out of a Binomial distribution B(3,2/3) which has two outcomes, R (red, probability 2/3) and G (green, probability 1/3).

Definition: Two events X, Y are independent if $P(X \cap Y) = P(X)P(Y)$.

Let A be the event 'two greens,' B 'first outcome is red,' and C 'Second is green.' Calculate the probabilities of $A, B, C, A \cap B, A \cap C$, and $B \cap C$. Determine whether A and B are independent, whether A and C are independent, and whether B and C are independent. (It helps to list the 8 outcomes and label them with their probability, and which of the events A, B, C they belong to.)

Answer.

RRR 8/27 B	RRG 4/27 B	RGR 4/27 BC	RGG 2/27 ABC		
GRR 4/27	GRG 2/27 A	GGR 2/27 AC	GGG 1/27 C		
Probabili	ities				
A	В	C	${\tt A}$ and ${\tt B}$	A and C	${\tt B}$ and ${\tt C}$
2/9	2/3	1/3	2/27	4/27	2/9
Independent?			No	No	Yes