MAU11S02 sixth Friday quiz, week 8 Friday 26/3/21 due 1pm Friday 2/4/21

Rules and procedures.

1. Attempt 3 questions. Only your first three answers will be marked. 2. Each question carries 20 marks, so the maximum quiz mark is 60. 3. If a particular method of solution is stipulated, you get no marks if you don't use it. 4. Show all work. No marks will be given for answers which do not show the calculations. 5. Your answers should be scanned and submitted to Blackboard as a 'Monday assignment.'

Remember, you must show all work.

Question 1. Calculate the least-squares linear estimate y = mx + c for the data

$$(-3,0), (-1,1), (0,2), (1,2)$$

Question 2. Calculate the least-squares quadratic estimate $y = ax^2 + bx + c$ for

$$(-3,0), (-1,1), (0,2), (1,2)$$

same data as in Question 1.

Question 3. Let

$$A = \left[\begin{array}{cc} 12 & -10 \\ 15 & -13 \end{array} \right]$$

Calculate eigenvalues and eigenvectors for A.

Question 4. Hence express A in the form $SA'S^{-1}$ where A' is a diagonal matrix, and evaluate e^A .

Question 5. Use eigenvector methods to calculate

$$\arctan \left[\begin{array}{cc} 0 & 1/3 \\ 1 & 0 \end{array} \right]$$

Note: $\tan(\pi/6) = 1/\sqrt{3}$. It should not be necessary to know a power series expansion for $\arctan(x)$, but here it is: $x - x^3/3 + x^5/5 \dots$ converges to $\arctan(x) - \tan^{-1}(x) - \inf|x| < 1$. The calculations are rather different this time. Sorry.