UNIVERSITY OF DUBLIN TRINITY COLLEGE

FACULTY OF SCIENCE

SCHOOL OF MATHEMATICS

JF Science

Trinity Term 2017

MATHEMATICS 1S12, HALF OF PAPER

Dr. Colm Ó Dúnlaing

Attempt 3 questions from each section

1. (a) Calculate the determinant

1	-1	2	3
2	-2	2	0
-3	-7	-2	-4
-1	-1	0	0

by bringing to upper triangular form.

Answer

2 -	1 2 2 2 7 -2 1 0	0		
1	-1	2	3	
0	0	-2	-6	
0	-10	4	5	
0	-2	2	3	
1	-1	2	3	
0	-10	4	5	
0	0	-2	-6	
0	0	6/5	2	
1	_	1	2	3

0 -10 4 5 0 0 -2 -6 0 0 0 -8/5 one swap determinant is 32

(b) Calculate the same determinant by cofactor expansion along the fourth row.

Answer		
(-3) *(-16) + 0	+ (4) * (-4) + 0 = 32	

(c) Find bases for the row space, the column space, and the nullspace, of the following matrix:

Answer

Row space basis: [1, 5, 0, 2], [0, 0, 1, 4]. Column space basis: columns 1 and 3. $[1, -1, -1]^T$, $[-1, 3, 1]^T$.

For the nullspace, relabel x_2 as s and x_4 as t.

$$x_1 + 5s + 2t = 0$$

$$x_3 + 4t = 0$$

$$[-5s - 2t, s, -4t, t]^T : \text{ basis}$$

$$[-5, 1, 0, 0]^T, [-2, 0, -4, 1]^T.$$

- 2. (a) Find an orthonormal basis X_1, X_2, X_3 where X_3 is on the axis (1, -1, -1).
 - (b) Give the matrix for rotating points 60° anticlockwise around the z-axis.
 - (c) Hence or otherwise compute the matrix for rotating points 60° around the axis (1, -1, -1).

Answer

$$S = \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{bmatrix}$$
$$A' = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$SA' = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{bmatrix}$$
$$SA'S^{T} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{bmatrix}$$

3. Given points

$$(-1,1), (0,0), (1,0), (3,-1)$$

- (a) Calculate the minimum least-squares linear estimate y = mx + c for this data.
- (b) Calculate the minimum least-squares quadratic estimate $y = ax^2 + bx + c$ for this data.

Answer

```
det A<sup>T</sup> A is 440
(-1, 1)
                                     (3, -1)
             (0, 0)
                         (1, 0)
m = -16/35, c = 12/35
a = 1/22, b = -61/110, c = 16/55
A<sup>T</sup> A, A<sup>T</sup> Y are
    18
            8
                  6,
                          3
     8
            6
                  2,
                         -1
            2
                  4,
     6
                          4
```

- 4. (a) Answer *either* (i) *or* (ii).
 - i. (*Either*): Cars arrive at a traffic lights at the rate of 4/minute. The red period is 20 seconds long. The green period is 40 seconds long, enough for up to 5 cars to get through. Given that 3 cars are left waiting when the lights turn red at time t_0 ,
 - A. What is the probability that there will be 1 car waiting the next time they turn red, one minute after t_0 ?
 - B. What is the probability that there will be no car waiting the next time they turn red, one minute after t_0 ?

Answer

(1) 3 arrivals.

$$e^{-4}\frac{1}{6}4^3 = 0.195367$$

(2) ≤ 2 arrivals.

$$e^{-4}\left(1+4+8\right) = 0.238103$$

- ii. (or alternatively): It is thought that a coin is in some way biased, in that the probability of heads $\neq 1/2$. To test this, it is tossed 12 times.
 - A. State the null hypothesis, and give a 2-tailed rejection region, a subset of $\{0...12\}$, which achieves 5% significance.
 - B. Suppose heads comes up 3 times. Do you conclude that the coin is biased, at the 5% level of significance?

Answer binomial 12, .5 0 0.0002 1 0.0029 2 0.0161 3 0.0537 4 0.1208 5 0.1934 6 0.2256 7 0.1934 8 0.1208 9 0.0537 10 0.0161 11 0.0029 12 0.0002 (A) Null hypothesis: Probability is 1/2. Rejection region: 0, 1, 2, 10, 11, 12 (total prob < 5% under the null hypothesis). (B) The null hypothesis stands.

(b) i. Find the sample mean and sample standard deviation for 2.13 2.82 1.24 1.15 1.49 2.25 -1.79 2.46 -1.10

ii. The underlying distribution from which the above sample was drawn is $N(\mu, \sigma^2)$ where μ and σ are unknown. Using Student's t-distribution, give a 90% symmetric confidence interval for μ .

Answer

$$\left| \sqrt{9} \frac{1.1833 - \mu}{1.6006} \right| \le \alpha$$
$$|1.1833 - \mu| \le \alpha \frac{1.6006}{3.0000}$$
$$\mu \in \left[1.1833 \mp \frac{1.6006}{3} \alpha \right]$$
$$\alpha = 1.860 \quad (t_8)$$
$$.1910 \le \mu \le 2.1756$$

iii. Using the chi-squared distribution, give a 90% 2-tailed confidence interval for $\sigma.$

Answer

The sample variance V is 2.5619. $8S^2/\sigma^2 \sim \chi_8^2$. Percentage points: 5%, 2.733; 95%, 15.507. $2.733 \le 8 \times 2.5619/\sigma^2 \le 15.507$ with 90% confidence. Answer

$$\begin{bmatrix} \frac{8 \times 2.5619}{15.507}, \frac{8 \times 2.5619}{2.733} \end{bmatrix}$$
[1.3216 $\leq \sigma^2 \leq 7.4991$ (90%) confidence
1.1495 $\leq \sigma \leq 2.7381$

© UNIVERSITY OF DUBLIN 2018