MAU11602 third quiz, week 6, Wed 2/2/22 due on Blackboard, 12 noon, Wed 16/3/22

Rules and procedures.

1. Attempt 3 questions. Only *your first three answers* will be marked. 2. Each question carries 20 marks, so the maximum quiz mark is 60. 3. If a particular method of solution is stipulated, you get no marks if you don't use it. 4. *Show all work.* No marks will be given for answers which do not show the calculations. 5. Your answers should be scanned and submitted to Blackboard.

Question 1. $(\exists x_i A)$ is an abbreviation for $(\neg(\forall x_i(\neg A)))$. Give a direct definition of

$$I, \sigma \models \exists x_i A$$

Question 2. This question aims to show that Theorem 13.1 is false unless the 't free for x_i ' condition is met.

Let $A(x_1)$ be $\exists x_2(x_1 \neq x_2)$ and $t = x_2$, so A(t) is $\exists x_2(x_2 \neq x_2)$.

Let I be an interpretation with domain \mathbb{N} with $=^{I}$ the equality relation on \mathbb{N} .

Let $\sigma = 1, 2, 3, 4 \dots$ so $\sigma_4 = 4$ and so on.

According to Theorem 13.1, σ' is $\sigma_{1\mapsto 2}$, since $\tau^{\sigma} = \sigma_2 = 2$.

Show that one of $A^{\sigma'}, A(t)^{\sigma}$ is true and the other false, so Theorem 13.1 does not hold. Question 3. Let K be the FOT with one function + and two predicates =, \leq . Let I_1 be

the interpretation over \mathbb{N} , with = interpreted in the usual way, but \leq interpreted indirectly.

$$m \leq^{I_1} n \iff$$
 for some k in \mathbb{N} , $m = n + k$.

Let I_2 be the interpretation like I_1 , except that

$$m \leq^{I_2} n \iff$$
 for some k in \mathbb{N} , $n = m + k$.

Verify whether the following is true in either interpretation:

$$\exists x_1 \forall x_2 (x_1 \le x_2)$$

Question 4. Suppose K is the usual axiom system for group theory, with the formal language 1, f_1 , f_2 , P_1 (identity, product, inverse, equality). Briefly, the axioms are associativity, left and right identity, left and right inverse.

We include a third binary function, f_3 . We represent it informally as $x_1 \circ x_2$.

$$x_1 \circ x_2 = (x_1 x_2)(x_1^{-1} x_2^{-1})$$

Convert the following, conventional, formulae into the formal language of K: (i) $x_1x_2 = x_2x_1$ (ii) $(x_1x_2)^{-1} = x_1^{-1}x_2^{-1}$ (iii) \circ is associative. Let D be the collection of all 2×2 invertible real matrices, and I the interpretation with domain D, where f_1^I is matrix product, 1^I is the identity matrix, and f_2^I is matrix inverse. Let σ be the following snapshot.

$$\sigma_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \ \sigma_{2} = \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}, \ \sigma_{3} = \begin{bmatrix} 17 & 20 \\ -12 & -14 \end{bmatrix}, \ \sigma_{4} = \begin{bmatrix} 18 & 20 \\ -12 & -13 \end{bmatrix}, \\ \sigma_{5} = \begin{bmatrix} -7 & -10 \\ 6 & 8.5 \end{bmatrix}, \ \sigma_{6} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \sigma_{7} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ \sigma_{8} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \\ \sigma_{9} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Values of σ_i for $i \ge 10$ do not affect the calculations.

(iv) Say if the formula $x_3x_4 = x_4x_3$ is true under σ .

(v) Say if the formula $x_1x_6 = x_6x_1$ is true under σ .

Question 5. And check the following for truth under the snapshot σ :

(i) $x_1x_5 = x_7$ (ii) $x_5x_3 = x_7$ (iii) $x_8 \circ (x_9 \circ x_9) = (x_8 \circ x_9) \circ x_9$. **Hint.** Invertible matrices A, B commute if and only if $A \circ B = I$ (the identity matrix).