

7 A Universal Turing Machine

7.1 A universal Turing machine

On the module web page there is a C program which simulates Turing machines presented as certain sequences of ASCII characters. This program is an interpreter for a very simple programming language (Turing machines presented as sets of quintuples).

We also have a way to encode Turing machines as certain sequences of binary digits. One could write a program in C for simulating Turing machines presented in this way: more importantly, one could construct **a Turing Machine U which is an ‘interpreter’ for the bitstring encoding of Turing machines**. That is, there exists a Turing machine U such that

$$\begin{cases} U(x) \uparrow & \text{if } x \text{ does not factorise as } yz \\ & \text{where } y \in \text{TM} \\ U(x) \uparrow & \text{if } x = yz \text{ where } y \in \text{TM} \text{ and } T_y(z) \uparrow \\ U(x) \downarrow & \text{if } x = yz \text{ where } y \in \text{TM} \text{ and } T_y(z) \downarrow. \end{cases}$$

The output of Turing machines can also be produced. For our purposes, it can be assumed that the output alphabet, and the input alphabet, is $\{0, 1\}$. Recall that a Turing machine M computes a partial function $f : \{0, 1\}^* \rightarrow \{0, 1\}$ if, when $f(z)$ is defined and equal to w , $M(z) \downarrow w$, i.e., M , when started on input z , eventually halts in a halting configuration $q_i w$, and if $f(z)$ is undefined, $M(z) \uparrow$.

A Turing machine U can be constructed with the following sharper property:

$$\begin{cases} U(x) \uparrow & \text{if } x \text{ does not factorise as } yz \\ & \text{where } y \in \text{TM} \\ U(x) \uparrow & \text{if } x = yz \text{ where } y \in \text{TM} \text{ and } T_y(z) \uparrow \\ U(x) \downarrow w & \text{if } x = yz \text{ where } y \in \text{TM} \text{ and } T_y(z) \downarrow w. \end{cases}$$

Such a Turing machine is called a *Universal Turing machine*. Note

$$\text{HALTING} = \{x \in \{0, 1\}^* : U(x) \downarrow\}$$

We shan’t construct U explicitly. The nearest thing to a universal turing machine is the program `turinginC.c` on the module web page.

7.2 Recursively enumerable and recursive sets and functions

(7.1) **Definition** (i) *A set X of bitstrings is recursively enumerable if there exists a Turing machine M such that*

$$X = \{x \in \{0, 1\}^* : M(x) \downarrow\}.$$

- (ii) A partial function $f : \{0,1\}^* \rightarrow \{0,1\}^*$ is partial recursive if there exists a Turing machine M such that $M(y) \downarrow w$ if $f(y)$ is defined and equal to w , and $M(y) \uparrow$ if $f(y)$ is undefined.
- (iii) A partial function $f : \{0,1\}^* \rightarrow \{0,1\}^*$ is recursive if it is (a) partial recursive and (b) defined everywhere, so its domain is $\{0,1\}^*$.
- (iv) The characteristic function χ_X of a set X (of bitstrings) is

$$\chi_X(z) = \begin{cases} 1 & \text{if } z \in X \\ 0 & \text{if } z \notin X \end{cases}$$

A set X of strings is recursive if its characteristic function is recursive.

(7.2) Corollary The set HALTING is recursively enumerable but not recursive. ■

This is a widespread phenomenon. Generally, the set of theorems in logic is recursively enumerable but not recursive; ditto, the solvable Diophantine equations, the set of polynomials in trigonometric functions which evaluate to zero everywhere; words evaluating to the identity in a group; and more.

7.3 Complements of sets and recursiveness

Let $X \subseteq \{0,1\}^*$ be given. We write \overline{X} to mean the complement of X , possibly for the purposes of this section only. That is, $\overline{X} = \{0,1\}^* \setminus X$.

(7.3) Lemma If X is recursive then \overline{X} is recursive.

Proof. $\chi_{\overline{X}} = 1 - \chi_X$. It is easy to argue that if one function is recursive then so is the other. ■

(7.4) Lemma If X is recursively enumerable, and \overline{X} is recursively enumerable, then X and \overline{X} are recursive.

Informal sketch of proof. Let M_1 be a Turing machine which on input x halts if, and only if, $x \in X$. Let M_2 halt if and only if $x \in \overline{X}$. It is possible to construct a Turing machine M which simulates steps of M_1 and M_2 alternately.

On input x , either M_1 will halt and M_2 loop, or vice-versa. So eventually M will discover one or the other case. If M_1 halts, M will halt with output 1, and if M_2 halts, M will halt with output 0. The machine M halts on all inputs and computes χ_X , so X is recursive. ■

(7.5) Corollary HALTING is recursively enumerable, but its complement is not. ■