7 A Universal Turing Machine

7.1 A universal Turing machine

On the module web page there is a C program which simulates Turing machines presented
as certain sequences of ASCII characters. This program is an interpreter for a very simple
programming language (Turing machines presented as sets of quintuples).

We also have a way to encode Turing machines as certain sequences of binary digits. One
could write a program in C for simulating Turing machines presented in this way: more im-
portantly, one could construct a Turing Machine U which is an ‘“interpreter’ for the
bitstring encoding of Turing machines. That is, there exists a Turing machine U such
that

U(xz) 1t if x does not factorise as yz

where y € TM
U(xz) 1t if v = yz where y € TM and T,(z) 1
U(x) | if x =yz where ye TM and T,(z) |.

The output of Turing machines can also be produced. For our purposes, it can be assumed
that the output alphabet, and the input alphabet, is {0,1}. Recall that a Turing machine
M computes a partial function f : {0,1}* + {0,1} if, when f(z) is defined and equal to w,
M(z) | w, i.e., M, when started on input z, eventually halts in a halting configuration g¢;w,
and if f(z) is undefined, M(z) 1.

A Turing machine U can be constructed with the following sharper property:

U(xz) 1 if x does not factorise as yz

where y e TM
U(x) 1 if z =yz where ye TM and T),(2) 1
U(z) | w if 2 = yz where y € TM and T} (2) | w.

Such a Turing machine is called a Universal Turing machine. Note

HALTING = {z € {0,1}*: U(z) |}

We shan’t construct U explicitly. The nearest thing to a universal turing machine is the
program turinginC.c on the module web page.

7.2 Recursively enumerable and recursive sets and functions

(7.1) Definition (i) A set X of bitstrings is recursively enumerable if there exists a Turing
machine M such that
X ={xe{0,1}*: M(x) |}.

(ii) A partial function f : {0,1}* « {0,1}* is partial recursive if there exists a Turing
machine M such that M(y) | w if f(y) is defined and equal to w, and M(y) 1 if f(y) is
undefined.

(iii) A partial function f: {0,1}* = {0,1}* is recursive if it is (a) partial recursive and (b)
defined everywhere, so its domain is {0, 1}*.

(iv) The characteristic function xx of a set X (of bitstrings) is

(2) = 1 ifze X
TV e x

A set X of strings is recursive if its characteristic function is recursive.
(7.2) Corollary The set HALTING is recursively enumerable but not recursive. |

This is a widespread phenomenon. Generally, the set of theorems in logic is recursively
enumerable but not recursive; ditto, the solvable Diophantine equations, the set of polynomials
in triganometric functions which evaluate to zero everywhere; words evaluating to the identity
in a group; and more.

7.3 Complements of sets and recursiveness

Let X < {0, 1}* be given. We write X to mean the complement of X, possibly for the purposes
of this section only. That is, X = {0, 1}*\X.

(7.3) Lemma If X is recursive then X is recursive.

Proof. xx = 1 — xx. It is easy to argue that if one function is recursive then so is the
other. |

(7.4) Lemma If X is recursively enumerable, and X is recursively enumerable, then X and
X are recursive.

Informal sketch of proof. Let M; be a Turing machine which on input x halts if, and
only if, z € X. Let M, halt if and only if z € X. It is possible to construct a Turing machine
M which simulates steps of M; and M, alternately.

On input x, either M; will halt and M, loop, or vice-versa. So eventually M will discover
one or the other case. If M; halts, M will halt with output 1, and if M, halts, M will halt
with output 0. The machine M halts on all inputs and computes xx, so X is recursive. [

(7.5) Corollary HALTING is recursively enumerable, but its complement is not. |}

	A Universal Turing Machine
	A universal Turing machine
	Recursively enumerable and recursive sets and functions
	Complements of sets and recursiveness

