3 A C program which simulates Turing machines

This is a rather simple program which (compiling to an executable tm) can be used as

tm [-trace] <machine> <inputs>

Note: originally, the machines were named xxx.tm, but that
extension conflicts with something, so xxx.tu was adopted

instead.

The C source code, plus several sample machines and sample
inputs, are in the module web page, subdirectory
turing-files.

*

/

* K X X X K X X X XK XK X X X X X X * X

Q0 0 B R q0
q0 1 B R q0
q0 BB L q0

gcc -o tm turinginC.c

Turing machine interpreter.
usage: tm <quintuples> <inputs>
Quintuples are in the form

1 and j are zero-suppressed integers; can’t have

q01. V (head movement) is ’L’ or ’R’.

For simplicity, Blank is ’B’ in quintuples.

It is expected that every state begins with the letter q
and is followed by an index, a decimal integer.

One quintuple per line. Comments after the quintuple are
ignored.

Lines which are empty or begin with a space are ignored.

Hence more comments are possible.

For example the text between the hyphens defines a machine

move right on O
move right on 1
move left on blank

Implicitly the input alphabet is binary, and
the machine always loops

*/

/*****************************

* usage
* tm <machine> <inputs>
* or

* tm -trace <machine> <inputs>
sk sk sk sk ok 3k ok K ok 3 ok 3k ok sk sk ok ok 3 ok s ok sk ok sk sk ok k k /

3.1 Always looping

Try the above Turing machine on the set pal of bitstrings
% cat pal

0
00
101
110
01

% cat looper.tu

q0 0 B R q0 move right on O
q0 1 B R q0 move right on 1
q0 B B L q0 move left on blank

% tm looper.tu pal
q0 0 B R q0
q0 1 B R q0
q0 B B L q0

input:
output: loops

input: O
output: loops

input: 00
output: loops

input: 101
output: loops

input: 110

output:

input:

output:

T

loops

01
loops

3.2 Input string 1”7, output n mod 2

% cat ones

11
111

11111111

1111
1

% tm mod2.tu ones

q0 1 B
ql 1 B
q0 B 0
ql B 1
g2 B B

input:

output:

input:

output:

input:

output:

input:

output:

input:

output:

input:

output:

input:

output:

R ql
R qO
R g2
R g2
L g3

11

111

11111111

0

1111

0

3.3 Same machine, run with trace on 1*

yA

% tm -trace mod2.tu 1to4
q0 1 BR ql

ql 1 BR q0

q0 B O R q2

gl B1R g2

g2 BB L g3

input: 1111
Configuration: state qO
1111

Configuration: state ql
B111

Configuration: state qO
BB11

Configuration: state ql
BBB1
Configuration: state qO
BBBB

Configuration: state g2
BBBBO

Configuration: state g3
BBBBOB

output: 0

3.4 Increment binary

Given a bitstring
(1) Be sure to loop on empty input
(2) Else move to the right-hand end
(3) Move left past 1s, changing to zero
(4) When zero or blank is met, change to 1
(5) Move to the left-hand end.

q0 B B R q0 1loop on empty input

g0 0 0 R q1 nonempty: move right
g0 1 1 R q1 same again

Q
—
(@]
=]

Q
=

gl 1 1 R ql Seek right-hand end

g2 1 0 L g2 move left past 1s changing to O
g2 0 1 L g3 rightmost O changed to 1

g2 B 1L g3 -—— when no Os in input

g3 1 1 L g3 Move to the left

g3 B B R g4 Ends scanning the leftmost bit
The C program includes a copy (no comments) of the machine. Here it runs on 11011.

% tm incr-220126.tu 11011

q0 B B R q0
q0 0 OR ql
g0 1 1 R ql
gl 0 O R ql
gl 11 R ql
ql BB L g2
g2 1 0L g2
g2 0 1 L g3
g2 B1L g3
g3 0 0L g3
g3 1 1L q3
g3 B BR g4

input: 11011
output: 11100
T

In all of these examples, the tape alphabet is {0,1,B}. There will be other examples which
need extra tape symbols.

	A C program which simulates Turing machines
	Always looping
	Input string 1n, output n 12mumod2
	Same machine, run with trace on 14
	Increment binary

