
3 A C program which simulates Turing machines

This is a rather simple program which (compiling to an executable tm) can be used as

tm [-trace] <machine> <inputs>

Note: originally, the machines were named xxx.tm, but that

extension conflicts with something, so xxx.tu was adopted

instead.

The C source code, plus several sample machines and sample

inputs, are in the module web page, subdirectory

turing-files.

/*

* gcc -o tm turinginC.c

*

* Turing machine interpreter.

* usage: tm <quintuples> <inputs>

* Quintuples are in the form

*

* qi a b V qj

*

* i and j are zero-suppressed integers; can’t have

* q01. V (head movement) is ’L’ or ’R’.

* For simplicity, Blank is ’B’ in quintuples.

* It is expected that every state begins with the letter q

* and is followed by an index, a decimal integer.

*

* One quintuple per line. Comments after the quintuple are

* ignored.

* Lines which are empty or begin with a space are ignored.

* Hence more comments are possible.

* For example the text between the hyphens defines a machine

q0 0 B R q0 move right on 0

q0 1 B R q0 move right on 1

q0 B B L q0 move left on blank

Implicitly the input alphabet is binary, and

the machine always loops

1

*/

/*****************************

* usage

* tm <machine> <inputs>

* or

* tm -trace <machine> <inputs>

*****************************/

3.1 Always looping

Try the above Turing machine on the set pal of bitstrings

% cat pal

0

00

101

110

01

% cat looper.tu

q0 0 B R q0 move right on 0

q0 1 B R q0 move right on 1

q0 B B L q0 move left on blank

% tm looper.tu pal

q0 0 B R q0

q0 1 B R q0

q0 B B L q0

input:

output: loops

input: 0

output: loops

input: 00

output: loops

input: 101

output: loops

input: 110

2

output: loops

input: 01

output: loops

%

3.2 Input string 1n, output n mod 2

% cat ones

11

111

11111111

1111

1

% tm mod2.tu ones

q0 1 B R q1

q1 1 B R q0

q0 B 0 R q2

q1 B 1 R q2

q2 B B L q3

input:

output:0

input: 11

output: 0

input: 111

output: 1

input: 11111111

output: 0

input: 1111

output: 0

input: 1

output: 1

input:

output:0

3

3.3 Same machine, run with trace on 14

%

% tm -trace mod2.tu 1to4

q0 1 B R q1

q1 1 B R q0

q0 B 0 R q2

q1 B 1 R q2

q2 B B L q3

input: 1111

Configuration: state q0

1111

^

Configuration: state q1

B111

^

Configuration: state q0

BB11

^

Configuration: state q1

BBB1

^

Configuration: state q0

BBBB

Configuration: state q2

BBBB0

Configuration: state q3

BBBB0B

^

output: 0

3.4 Increment binary

Given a bitstring
(1) Be sure to loop on empty input

(2) Else move to the right-hand end
(3) Move left past 1s, changing to zero
(4) When zero or blank is met, change to 1
(5) Move to the left-hand end.

q0 B B R q0 loop on empty input

4

q0 0 0 R q1 nonempty: move right

q0 1 1 R q1 same again

q1 0 0 R q1

q1 1 1 R q1 Seek right-hand end

q1 B B L q2

q2 1 0 L q2 move left past 1s changing to 0

q2 0 1 L q3 rightmost 0 changed to 1

q2 B 1 L q3 --- when no 0s in input

q3 0 0 L q3

q3 1 1 L q3 Move to the left

q3 B B R q4 Ends scanning the leftmost bit

The C program includes a copy (no comments) of the machine. Here it runs on 11011.

% tm incr-220126.tu 11011

q0 B B R q0

q0 0 0 R q1

q0 1 1 R q1

q1 0 0 R q1

q1 1 1 R q1

q1 B B L q2

q2 1 0 L q2

q2 0 1 L q3

q2 B 1 L q3

q3 0 0 L q3

q3 1 1 L q3

q3 B B R q4

input: 11011

output: 11100

%

In all of these examples, the tape alphabet is {0,1,B}. There will be other examples which
need extra tape symbols.

5

	A C program which simulates Turing machines
	Always looping
	Input string 1n, output n 12mumod2
	Same machine, run with trace on 14
	Increment binary

