

8 Truth-tables and Propositional Logic

8.1 Truth tables and propositional connectives

Propositional logic is concerned with **truth-functions**, functions whose values are the two **truth-values** 0, 1 (for **false** and **true** respectively), and whose arguments are also truth-values.

(8.1) Definition boolean variables *are variables which are restricted to truth-values*. A boolean expression, boolean formula, or formula for short, is a correctly formed expression involving boolean variables and boolean connectives.

Certain truth-functions are well-known.

$$0 \mapsto 1, \quad 1 \mapsto 0$$

is simply *negation (not)*. If X is a boolean variable then $\neg X$ is its negation. Negation can be represented in a **truth table** as follows

X	$\neg X$
0	1
1	0

$$(0, 0) \mapsto 0, \quad (0, 1) \mapsto 0, \quad (1, 0) \mapsto 0, \quad (1, 1) \mapsto 1$$

is *conjunction (and)*. If X and Y are boolean variables, $X \wedge Y$ represents their conjunction. Here is the truth table for conjunction.

X	Y	$X \wedge Y$
0	0	0
0	1	0
1	0	0
1	1	1

It can also be displayed in a table as follows.

$X \wedge Y$	0	1
0	0	0
1	0	1

Disjunction (or) is represented $X \vee Y$ and has the following table.

$X \vee Y$	0	1
0	0	1
1	1	1

(8.2) Definition Two formulae are equivalent if they have the same truth-table.

Implication (if... then) is represented $X \Rightarrow Y$ and has the following table.

$X \Rightarrow Y$	0	1
0	1	1
1	0	1

It is just a way of connecting boolean variables, and in fact $X \Rightarrow Y$ is equivalent to $(\neg X) \vee Y$ — the two expressions have the same truth-table. I believe it is called the Philonian conditional.

(8.3) The Philonian conditional is the weakest kind of ‘implication’ which guarantees the following:

If X is true and $(X \Rightarrow Y)$ is true then Y is true.

(8.4) The propositional connectives have various familiar properties: \wedge is commutative and associative, etcetera. Importantly,

(De Morgan laws.) $\neg(X \wedge Y)$ and $(\neg X) \vee (\neg Y)$ are equivalent, and $\neg(X \vee Y)$ and $(\neg X) \wedge (\neg Y)$ are equivalent.

(8.5) **Conventions about precedence of connectives.** Just as with arithmetic expressions, it is convenient to drop parentheses from boolean expressions. To avoid overload, we’ll not say what they are!

8.2 Truth-functions, tautologies, and contradictions

To begin with, *every* truth-function can be realised by a boolean expression using only \wedge , \vee , \neg .

(8.6) **Definition** If X is a boolean variable, we sometimes write \bar{X} to mean $\neg X$.

Both X and \bar{X} are called literals. If $L = \bar{X}$ then we define $X = \bar{L}$ (which is obviously correct, since $\neg\neg X$ is equivalent to X).

We write $\pm L$ to mean L or \bar{L} .

(8.7) **Lemma** Let $f : \{0, 1\}^n \rightarrow \{0, 1\}$ be a boolean function. There exists a formula formed from the boolean variables X_1, \dots, X_n , which is equivalent to f .

Half proof. Suppose that in k rows of the truth-table for f the value of f is 1. The formula has the form

$$D_1 \vee D_2 \vee \dots \vee D_k$$

where each subformula D_i is of the form

$$(\pm X_1 \wedge \dots \wedge \pm X_n).$$

Suppose the values in the i -th such row are x_1, \dots, x_j . Then X_j occurs in the formula if $x_j = 1$, and \bar{X}_j occurs if $x_j = 0$.

This breaks down if $k = 0$, so f takes the constant value 0. $X_1 \wedge \bar{X}_1$ will do in this case. ■

(8.8) **Definition** Formulae of this kind:

$$(\pm X_{i_1} \wedge \dots \wedge \pm X_{i_{k_1}}) \vee (\pm X_{i_{k_1}} \wedge \dots \wedge \pm X_{i_{k_2}}) \dots$$

are said to be in disjunctive normal form or DNF. They are a disjunction of conjunctions.

Example. Construct a DNF expression for $X_1 \Rightarrow X_2$.

X_1	X_2	$X_1 \Rightarrow X_2$
0	0	1
0	1	1
1	0	0
1	1	1

$$(\overline{X}_1 \wedge \overline{X}_2) \vee (\overline{X}_1 \wedge X_2) \vee (X_1 \wedge X_2).$$

Another example.

X_1	X_2	X_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0

X_1	X_2	X_3	f
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

The DNF is easily formed by picking out the rows where the f -value is 1.

$$(\overline{X}_1 \wedge \overline{X}_2 \wedge X_3) \vee (\overline{X}_1 \wedge X_2 \wedge \overline{X}_3) \vee (X_1 \wedge \overline{X}_2 \wedge X_3)$$

(8.9) Definition A formula is in conjunctive normal form (CNF) if it is of the form

$$(L_1 \vee L_2 \vee \dots \vee L_k) \wedge (L_{k+1} \vee L_{k+2} \vee \dots \vee L_\ell) \wedge \dots \wedge (L_{r+1} \vee L_{r+2} \vee \dots \vee L_s)$$

where L_1, \dots, L_s are literals, not necessarily distinct.

(8.10) Corollary Every truth-function can be realised by a CNF.

Proof. Let D be a DNF realising the negation of $f(T_1, \dots, T_n)$. The formula $\neg D$ is easily converted into a CNF using De Morgan's laws, and it realises f . **Q.E.D.**