
23 Turing machines encoded, again

23.1 φm, again

Consider a Turing machine M whose input alphabet is t0, 1u�, likewise its output alphabet. We
assume that whenever it halts, the tape contents are a single bitstring surrounded by blanks,
with the read/write head positioned at the leftmost bit (if the bitstring is nonempty). Actually,
there is a translation process which converts M to a machine with this property, but it is very
slightly easier and only slightly wrong just to assume it.

The machine M (partially) computes a partial function f : N ÞÑ N. For any n P N, let z be
the unique bit-string whose length-lexicographical encoding is n. If M halts on input z, then
it halts with a well-defined output w, and fpnq is the length-lex encoding of w. If M loops on
input z then fpnq is undefined.

For any m P N, if y is the reverse enoding of m, i.e., m is the length-lex encoding of m, and
y P TM , then there is a unique Turing machine M whose code is y. Then φm is the partial
function computed by M , as above.

If y R TM then φm is nowhere defined.

23.2 Configurations of M

• Recall that a configuration of a Turing machine M is a combined string αqβ where αβ

is a string, over the tape alphabet, including all the nonblank part of the tape, q is the
state, and the leftmost symbol in β gives the tape square being scanned (blank if β � λ).

• Recall that it is quite easy to define a relation αqβ $M α1q1β1, where the configuration
αqβ yields α1q1β1 directly.

• $

�

M for the ‘transitive closure’ of the relation $M .

• It is even easier to identify a halting configuration.

• Also, the string (w above) found on the tape in a halting configuration.

• Also, the initial configuration on input z: q0z.

We use σ and σi to denote configurations of M (for no particular reason).

23.3 The partial function computed by M , again

Again discussing φm, where m is the length-lex encoding of a bitstring y which belongs to TM
and therefore encodes a Turing machine. (If y R TM , it is of little interest).

Call that Turing machine M : the machine encoded by the unique string y whose length-lex
encoding is m.

Given n P N, φmpnq is defined as follows. Let z be the reverse encoding of n, i.e., n is the
length-lex encoding of z.

If there exists a sequence σ0, σ1, . . . , σp of configurations of M such that

• σ0 � q0z, the initial configuration on input z,

1

• for 1 ¤ k ¤ p, σk�1 $M σk, and

• σp is halting.

Then M halts on input z, and there is a unique bitstring w on the tape in the halting config-
uration σp, and

φmpnq � r

where r is the length-lex encoding of w.
If no such sequence exists then M loops on input z and

φmpnq Ò

23.4 Hpm,n, r, sq

This relation says

• m is the length-lex encoding of a bitstring y which is a valid encoding of a Turing machine,
call it M .

• Let z be the string length-lex encoded as n.

• Let w be the string length-lex encoded as r.

• Let σ be the string length-lex encoded as s.

• Then σ encodes a halting sequence, of M , with input string z, and output string (from
the halting configuration) w which is encoded as r.

The relation refers repeatedly to concatenation of strings, which we know is a primitive
recursive function under the length-lex encoding. But more importantly

(23.1) Proposition The relation Hpm,n, r, sq is primitive recursive (i.e., considered as a
function mapping to 0 and 1, it is primitive recursive).

But every primitive recursive relation is representable (or expressible) in Peano Arithmetic.
Remember that

0 � 0, 1 � sp0q, 2 � spsp0qq . . .

are the so-called numerals. There is a formula Apx1, x2, x3, x4q of Peano arithmetic, with only
x1, x2, x3, x4 free, such that Hpm,n, r, sq is true if and only if

Apm,n, r, sq

can be proved in Peano Arithmetic.

2

	Turing machines encoded, again
	m, again
	Configurations of M
	The partial function computed by M, again
	H(m,n,r,s)

