23 Turing machines encoded, again

23.1 ¢, again

Consider a Turing machine M whose input alphabet is {0, 1}*, likewise its output alphabet. We
assume that whenever it halts, the tape contents are a single bitstring surrounded by blanks,
with the read /write head positioned at the leftmost bit (if the bitstring is nonempty). Actually,
there is a translation process which converts M to a machine with this property, but it is very
slightly easier and only slightly wrong just to assume it.

The machine M (partially) computes a partial function f : N -+ N. For any n € N, let z be
the unique bit-string whose length-lexicographical encoding is n. If M halts on input z, then
it halts with a well-defined output w, and f(n) is the length-lex encoding of w. If M loops on
input z then f(n) is undefined.

For any m € N, if y is the reverse enoding of m, i.e., m is the length-lex encoding of m, and
y € TM, then there is a unique Turing machine M whose code is y. Then ¢,, is the partial
function computed by M, as above.

If y¢ TM then ¢,, is nowhere defined.

23.2 Configurations of M

e Recall that a configuration of a Turing machine M is a combined string agf where af
is a string, over the tape alphabet, including all the nonblank part of the tape, ¢ is the
state, and the leftmost symbol in § gives the tape square being scanned (blank if 8 = \).

Recall that it is quite easy to define a relation agf s o/¢’3’, where the configuration
aqp yields o/q'B" directly.

3, for the ‘transitive closure’ of the relation ;.

e [t is even easier to identify a halting configuration.

e Also, the string (w above) found on the tape in a halting configuration.
e Also, the initial configuration on input z: goz.

We use o and o; to denote configurations of M (for no particular reason).

23.3 The partial function computed by M, again

Again discussing ¢,,,, where m is the length-lex encoding of a bitstring y which belongs to TM
and therefore encodes a Turing machine. (If y ¢ TM, it is of little interest).

Call that Turing machine M: the machine encoded by the unique string y whose length-lex
encoding is m.

Given n € N, ¢,,(n) is defined as follows. Let z be the reverse encoding of n, i.e., n is the
length-lex encoding of z.

If there exists a sequence oy, 071, ..., 0, of configurations of M such that

® 0y = (oz, the initial configuration on input z,

1



o for 1 <k <p, op_1 Fn op, and
e 0, is halting.

Then M halts on input z, and there is a unique bitstring w on the tape in the halting config-
uration o, and

¢m(n) =r

where r is the length-lex encoding of w.
If no such sequence exists then M loops on input z and

Pm(n) 1

23.4 H(m,n,r,s)

This relation says

e m is the length-lex encoding of a bitstring y which is a valid encoding of a Turing machine,
call it M.

e Let z be the string length-lex encoded as n.
e Let w be the string length-lex encoded as r.
e Let o be the string length-lex encoded as s.

e Then o encodes a halting sequence, of M, with input string z, and output string (from
the halting configuration) w which is encoded as 7.

The relation refers repeatedly to concatenation of strings, which we know is a primitive
recursive function under the length-lex encoding. But more importantly

(23.1) Proposition The relation H(m,n,r,s) is primitive recursive (i.e., considered as a
function mapping to 0 and 1, it is primitive recursive).

But every primitive recursive relation is representable (or expressible) in Peano Arithmetic.
Remember that

0=0,1=s(0),2=s(s(0))...
are the so-called numerals. There is a formula A(xy, xs, 23, x4) of Peano arithmetic, with only
x1, T9, T3, T4 free, such that H(m,n,r, s) is true if and only if
A(m,m,T,3)

can be proved in Peano Arithmetic.



	Turing machines encoded, again
	m, again
	Configurations of M
	The partial function computed by M, again
	H(m,n,r,s)


