5 Encoding Turing machines

The C program for applying Turing machines takes two files, one being a Turing machine
presented as a list of quintuples, and the other being sample data (the data is a set of inputs,
one per line).

Example Turing machine. The following is a Turing machine to increment binary num-
bers (possibly the same machine was shown in the previous section).

q0 0 O R qO0
q0 1 1 R g0
q0 BB L ql
gl 1 0L q1
ql 0 1 L g2
gl B1L g2
g2 0 0 L g2
g2 1 1L g2
g2 B BR g3

What we have here is a set of ASCII strings of a certain format; it is a kind of programming
language.
And here is a sample run of this machine (three separate tests)

input: O
output: 1
input:

output: 1

input: 1110000110111
output: 1110000111000

5.1 Encoding Turing machines as bitstrings

If we could encode Turing machines as bitstrings, then we could possibly build an interpreter
for Turing machines, where the ‘interpreter’ is itself a Turing machine.

To encode a Turing machine as a bitstring is easy. There are millions of ways to choose an
encoding: here is one.

It is assumed that the input alphabet is binary, the tape alphabet is Xy, ..., X;, where
Xo=0,X; =1,X, = B, and the other tape symbols are in arbitrary order.

It is assumed that the state symbols are ¢;, and qq is the initial state.

A quintuple

¢ X; X Lqy

is encoded as . ‘
1107711 10711 10FT11 101 1011 1



;X X Rqq

is encoded as
1 10" 10711 10Ft11 1001 1011 1

Notice that every quintuple is ‘framed’ between two 1s. The full encoding of the Turing
machine is the bitstring

111Q, ... Q111

Or rather, an encoding: the quintuples can be listed in any order. For example, the above
incrementing machine is encoded as

111

110110110110011011
11011001100110011011
1101100011000110110011
11001100110110110011
110011011001101100011
11001100011001101100011
110001101101101100011
11000110011001101100011
110001100011000110011000011
111

It can be checked by decoding

q0 0 0 R g0
90 1 1 R q0
q0 BB L q1
ql 1 0L q1
ql 0 1 L g2
ql B1L g2
92 0 0 L g2
g2 1 1L g2
g2 B BR g3

The quintuples are framed 111...111 because only at the beginning and the end are there
more than four 1s in succession. The important consequence is:

(5.1) Lemma If = is any bitstring, and x can be ‘factorised’ as the product of two strings
y and z concatenated, i.e., x = yz, and y is a valid encoding of a Turing machine, then the
factorisation is unique.

Put another way: if there exist bitstrings vy, z1, Yo, 22 sSuch that x = y121 = yo29 and y, and
y2 are both valid encodings of Turing machines, then y; =y and z; = z5. |

Actually, X; is not the only permitted style of tape symbol. The following code (which is
related to the Halting Problem) doubles its input, using extra tape symbols. It can still be
encoded: the extra tape symbols are indexed in the order of appearance.



g0 0 sRql g1 0 0Rql g1 11
gl tt Rgql qgqtuuRql qgqlvyv
g2 0 0L g2 g21 1L g2 g2uu
g2 s sRq0 g2t tRq0 q0 1 ¢t
g3 11 Rg3 g3ssRqg3 g3tt
g3 vvRqg3 g3 BvILag4d 9g400
g4 uulgd gdvvLagd g4 s s
g0 u OR g g0 v1Rgs gbuo
g5 BBL g6 g6 0 OL g6 g6 11
g6 t 1 L g6 g6 B B R q7
Encoded:
111
1101101100001100110011
11001101101100110011

1100110011001100110011
11001100001100001100110011
1100110000011000001100110011
110011000000110000001100110011
11001100000001100000001100110011
110011000110000001101100011
110001101101101100011

etcetera
Decoded:

g0 0 X3 Rql q1 00RGql ql
ql X3 X3 R ql ql X4 X4 R gl qil
gl X6 X6 R q1 ql BX5 L g2 q2
g2 1 1 L g2 g2 X5 X6 L g2 qg2
g2 X3 X3 R g0 g2 X4 X4 R q0 qO
g3 0 0 R g3 g3 1 1R g3 q3
g3 X4 X4 R g3 g3 X5 X5 R g3 g3
g3 BX6 L g4 94 00L g4 Q4
g4 X6 X6 L g4 q4 X6 X6 L g4 q4
g4 X4 X4 R 90 q0 X5 O R g6 qO
g5 X6 O R gb g6 X6 1 R gd @b
g6 0 O L g6 g6 1 1 L g6 q6
g6 X4 1 L g6 96 B B R q7

And applied:

% tm double.tu 11011
input: 11011
output: 1101111011

= v B v I = v = v B m = v B = v
Ne
W
Ne)
w
n < o, g O< Won
O, cd =, g O & 0

11Rql
X5 X6 R ql
00L g2
X6 X6 L g2
1 X4 R g3
X3 X3 R q3
X6 X6 R q3
1 1L g4
X3 X3 R q0
X6 1 R g5
BBL g6
X3 0L g6

(= v A=~ 2 SR~ 2= i =)



	Encoding Turing machines
	Encoding Turing machines as bitstrings


