22 The semicomputable functions ¢,, and the Fixed Point
Theorem

The completeness theorem says that (in a consistent theory) every formula A is either provable
or admits a counterexample. The question is: how to find a proof of A. We are now looking
at computability questions in first-order logic.

22.1 Halting computations

e We only consider the Turing machines which take bitstrings as input and produce bit-
strings as output.

e Given a Turing machine 7', it is possible, by identifying the halting configurations and
adding more quintuples, to produce a Turing machine 7" such that, whenever it halts,
it halts with a single bitstring w on the tape, possibly empty, and with the r/w head
positioned at the first bit in w (if w 4 A).

e On input z, the machine 7" either loops, or halts with a well-defined string w on its tape.
In terms of the length-lex encoding, the machine computes a partial function f: N -» N,
where for any n € N, f(n) is either

— undefined, if 7" loops on input z, where z is the reverse encoding of n (i.e., n is the
length-lex encoding of z), or

— r, if 7" halts on input z (the same z) with bitstring w on the tape, where r is the
length-lex encoding of w.

e Notation:
f(n) 1
f(n) is undefined when the machine loops, and
fln) Lr

if f(n) is defined and the output is r.

e If y is a bitstring encoding of 7', then 7" has a bitstring encoding 3" and the map y — 3/
is well-defined on TM | i.e., whenever y is a valid bitstring encoding a Turing machine.

The map can be extended to {0, 1}*, all bitstrings. Choose some yo € TM such that T,
always loops. Map y — vy if y ¢ TM.

The extended map y — 3 is recursive: it is computable by some TM (Turing machine)
which halts on all inputs y, although it would be an extremely complicated TM.

(22.1) Definition For m = 0,1,... the partial function
Om: N-+»N

is defined as follows. Let y € {0,1}* be the length-lex encoding of m.

1



Let y' be as described above.

Then ¢y, is the function computed by T,, under the length-lex encoding.

So, if y¢ TM then ¢,, T, i.e., it is nowhere defined, its domain is F.

If v € TM then for any n € N, let y be its length-lex encoding; then

T Tu(y) 1
dm(n) =<k if Tu(y) | 2z and
k is the length-lex decoding of z

(22.2) Definition By ‘semicomputable function’ we mean a partial function f : N -» N
which can be computed by a Turing machine, i.e., f is one of the partial functions ¢,,. By
‘computable” we mean a function f: N — N which is semicomputable.

In other words, f can be computed by a Turing machine which halts on all inputs.

Other words synonymous with ‘computable’: recursive, fully computable, total recursive.

Next we have a very interesting result. It is due to Kleene, I think.

(22.3) Theorem (The Fixed Point Theorem or Recursion Theorem). Let f: N — N
be a recursive function. Then there exists an index n such that

GOn = Gfn)
The theorem will be based on the following

(22.4) Lemma There exists a recursive function g such that for any m € N,

PO L CHCON
7 Gy if D) |

Proof. Given m, let y be its length-lex encoding. We construct a Turing machine M based
on information which is easy to extract from y.

If y¢ TM then ¢,,(m) 1 and M should loop on every input.

If y € TM then, on input z, M should first ignore its own input z and imitate the Universal
Turing machine on input yy. This amounts to computing ¢,,(m).

It T,(y) 1, ie., ¢p(m) 1, then M will loop.

Otherwise, T}, halts on input y with output w, say. Then M should imitate U on input wz.
If it halts then its output should be that of T,,(z).

That is, given input z, with length-lex value n, the Turing machine M either loops or halts
with output 77, ,)(2), which is the length-lex encoding of

¢¢’m (m) <n) .

While the behaviour of M is hard to predict, its construction is a straightforward procedure
starting with the length-lex encoding y of m. That is, a bitstring v encoding M can be given
as a recursive function of y. The function g(m) is the length-lex value of v. |}

2



Proof of Fixed Point Theorem. Let g be as above. Given a recursive function f, we
shall choose n = g(m) where m is another index. We would then want to show

P fog(m) = Pg(m)

that is
P pogim) = Py (m)-

This can be achieved if m is an index of the function f o g, which is recursive. So
e Choose m so that ¢,, is the recursive function f o g.
o Let n = g(m).

Then
Pn = Pgm) = Popu(m) = Progim) = Prm) 1



	The semicomputable functions m and the Fixed Point Theorem
	Halting computations


