
22 The semicomputable functions φm and the Fixed Point

Theorem

The completeness theorem says that (in a consistent theory) every formula A is either provable
or admits a counterexample. The question is: how to find a proof of A. We are now looking
at computability questions in first-order logic.

22.1 Halting computations

• We only consider the Turing machines which take bitstrings as input and produce bit-
strings as output.

• Given a Turing machine T , it is possible, by identifying the halting configurations and
adding more quintuples, to produce a Turing machine T 1 such that, whenever it halts,
it halts with a single bitstring w on the tape, possibly empty, and with the r/w head
positioned at the first bit in w (if w �� λ).

• On input z, the machine T 1 either loops, or halts with a well-defined string w on its tape.
In terms of the length-lex encoding, the machine computes a partial function f : N ÞÑ N,
where for any n P N, fpnq is either

– undefined, if T 1 loops on input z, where z is the reverse encoding of n (i.e., n is the
length-lex encoding of z), or

– r, if T 1 halts on input z (the same z) with bitstring w on the tape, where r is the
length-lex encoding of w.

• Notation:
fpnq Ò

fpnq is undefined when the machine loops, and

fpnq Ó r

if fpnq is defined and the output is r.

• If y is a bitstring encoding of T , then T 1 has a bitstring encoding y1 and the map y ÞÑ y1

is well-defined on TM , i.e., whenever y is a valid bitstring encoding a Turing machine.

The map can be extended to t0, 1u�, all bitstrings. Choose some y0 P TM such that Ty0

always loops. Map y ÞÑ y0 if y R TM .

The extended map y ÞÑ y1 is recursive: it is computable by some TM (Turing machine)
which halts on all inputs y, although it would be an extremely complicated TM.

(22.1) Definition For m � 0, 1, . . . the partial function

φm : N ÞÑ N

is defined as follows. Let y P t0, 1u� be the length-lex encoding of m.

1

• Let y1 be as described above.

• Then φm is the function computed by Ty1 under the length-lex encoding.

• So, if y R TM then φm Ò, i.e., it is nowhere defined, its domain is H.

• If x P TM then for any n P N, let y be its length-lex encoding; then

φmpnq �

$

'

&

'

%

Ò if Txpyq Ò

k if Txpyq Ó z and

k is the length-lex decoding of z

(22.2) Definition By ‘semicomputable function’ we mean a partial function f : N ÞÑ N

which can be computed by a Turing machine, i.e., f is one of the partial functions φm. By

‘computable’ we mean a function f : N Ñ N which is semicomputable.

In other words, f can be computed by a Turing machine which halts on all inputs.

Other words synonymous with ‘computable’: recursive, fully computable, total recursive.

Next we have a very interesting result. It is due to Kleene, I think.

(22.3) Theorem (The Fixed Point Theorem or Recursion Theorem). Let f : N Ñ N

be a recursive function. Then there exists an index n such that

φn � φfpnq

The theorem will be based on the following

(22.4) Lemma There exists a recursive function g such that for any m P N,

φgpmq

�

#

Ò if φmpmq Ò

φφmpmq

if φmpmq Ó

Proof. Given m, let y be its length-lex encoding. We construct a Turing machine M based
on information which is easy to extract from y.

If y R TM then φmpmq Ò and M should loop on every input.
If y P TM then, on input z, M should first ignore its own input z and imitate the Universal

Turing machine on input yy. This amounts to computing φmpmq.
If Typyq Ò, i.e., φmpmq Ò, then M will loop.
Otherwise, Ty halts on input y with output w, say. Then M should imitate U on input wz.

If it halts then its output should be that of Twpzq.
That is, given input z, with length-lex value n, the Turing machine M either loops or halts

with output TTypyqpzq, which is the length-lex encoding of

φφmpmq

pnq.

While the behaviour of M is hard to predict, its construction is a straightforward procedure
starting with the length-lex encoding y of m. That is, a bitstring v encoding M can be given
as a recursive function of y. The function gpmq is the length-lex value of v.

2

Proof of Fixed Point Theorem. Let g be as above. Given a recursive function f , we
shall choose n � gpmq where m is another index. We would then want to show

φf�gpmq

� φgpmq

that is
φf�gpmq

� φφmpmq

.

This can be achieved if m is an index of the function f � g, which is recursive. So

• Choose m so that φm is the recursive function f � g.

• Let n � gpmq.

Then
φn � φgpmq

� φφmpmq

� φf�gpmq

� φfpnq

3

	The semicomputable functions m and the Fixed Point Theorem
	Halting computations

