

12 Semantics of first-order theories

A first-order theory provides ways of *proving* certain formulae, which we will call theorems. But how do we know that the theorems are true? In Propositional logic, the criterion was simple: only tautologies are true. They are true because every truth-assignment makes them true.

So we need some idea of truth-assignment. It is much more complex than for propositional logic.

12.1 Interpretations

(12.1) Definition Let K be a first-order theory. An interpretation I of $\mathcal{L}(K)$ consists of

- A nonempty domain D
- For each constant a_i , a constant a_i^I in D
- For each function letter f , a mapping $f^I : D^k \rightarrow D$, where k is the arity of f , i.e., f is a k -ary function letter.
- For each predicate letter P , a mapping $P^I : D^k \rightarrow \{0, 1\}$, where k is the arity of P .

Note: an interpretation of a theory may or may not satisfy its proper axioms; at this point, whether it does or doesn't is irrelevant.

Example. Taking the axioms for group theory, one could take as domain D the group of all invertible 3×3 matrices, $1^I = I_{3 \times 3}$, $=^I$ equality of matrices, multiplication, which was originally represented as f_1 : f_1^I is matrix multiplication, and f_2^I is matrix inverse. This interpretation makes the axioms true in a sense defined later.

Example Again group theory: Domain \mathbb{Z} , $1^I = 0$, f_1^I is addition, f_2^I is negation, and $=^I$ is congruence mod 7.

12.2 Snapshots and terms

Suppose that we have an interpretation I of Abelian groups with constant 0, addition operation, negation, and equality. What is the value of the term $x_1 + (x_2 + x_3)$? D is the domain.

The answer is that it defines or ‘induces’ a mapping $D^3 \rightarrow D$. For every triple in D^3 , there is a well-defined value that term has.

For example, suppose that we interpret some theory of Abelian groups in terms of integers \mathbb{Z} . Then the above term $x_1 + (x_2 + x_3)$ translates into a function of three arguments; if these three variables are mapped to 10, 9, 8, respectively, then the value of that term is 27.

(12.2) Definition Let I be an interpretation of a theory K with domain D . A snapshot is a countable sequence

$$d_1, d_2, \dots$$

of elements of D .

A snapshot is intended to be a simultaneous assignment of values to *all* the variables x_i .

It is — maybe — similar or analogous to the contents of the tape in a computation step of a Turing machine. It is a ‘snapshot’ of the values of all variables.

- Let $\sigma = \sigma_1, \sigma_2, \dots$ be a snapshot.
- Textbooks would call a snapshot a ‘denumerable sequence’ and leave it at that.
- The variables x_1, \dots are a recognisable sequence, and σ is used *purely* as a map taking the variable x_i to σ_i .
- Or just call it an assignment, or a binding (of the variables) or a configuration, analogous in some way to a configuration of a Turing machine.

12.3 t^σ

Let I be an interpretation, t a term, and σ a ‘snapshot’, the value

$$t^\sigma$$

of t under σ is an element of D defined by induction on the depth of t .

- If t is a constant a , then $t^\sigma = a^I$.
- If t is a variable x_i , then $t^\sigma = \sigma_i$.
- If t is $f(t_1, \dots, t_k)$, then t^σ is

$$f^I(t_1^\sigma, \dots, t_k^\sigma).$$

12.4 $I, \sigma \models A$: truth-value of a formula A under a snapshot σ .

Important notation. Let I be an interpretation with domain D , σ a snapshot, d an element of D , and i a positive integer. Then

$$\sigma_{i \rightarrow d}$$

is the snapshot which has value d at i and otherwise is the same as σ . That is, $\sigma_{i \rightarrow d}$ is that snapshot τ such that

$$\tau_j = \begin{cases} \sigma_j & \text{if } j \neq i \\ d & \text{if } j = i. \end{cases}$$

The value (0 or 1) of a formula A under σ is defined by induction on the depth of A .

- An *atomic* formula is one of the form $P(t_1, \dots, t_k)$, where P is a predicate letter. If A is such an atomic formula, then

$$A^\sigma \text{ is } P^I(t_1^\sigma, \dots, t_k^\sigma).$$

We write $I, \sigma \models A$ when A^σ is true.

- If A is $\neg B$, then A^σ is true if and only if B^σ is false.
- If A is $B \Rightarrow C$, then A^σ is true if either B^σ is false or C^σ is true.
- This is the interesting part.

If A is $\forall x_i B$, and d is any domain element, then $\sigma_{x_i \mapsto d}$ is the snapshot σ' , where

$$\sigma'_j = \begin{cases} \sigma_j & \text{if } j \neq i \\ d & \text{if } j = i. \end{cases}$$

Then

$$I, \sigma \models A$$

if and only if for every $d \in D$,

$$I, \sigma_{x_i \mapsto d} \models B.$$