

9 Resolution

9.1 The first goal of mathematical logic

(9.1) **Definition** Let F be a boolean formula involving the variables X_1, \dots, X_n . An interpretation or truth-assignment to F is a map $X_1 \mapsto T_1, \dots, X_n \mapsto T_n$, where T_1, \dots, T_n is a vector of truth-values. There are 2^n interpretations of F .

A boolean formula is a tautology if it is true in all interpretations, and it is inconsistent if it is false in all interpretations.

The first goal is to provide methods for proving true things which are true.

At present, the ‘things’ are Boolean formulae, and ‘true’ means ‘tautology.’

A certain way of proving something (containing n Boolean variables) true is to check it against all 2^n interpretations — in other words, build the truth-table.

Resolution (see below) provides a generally more efficient method. It is not always very efficient, as was shown at different times by Tseitin, Galil, Haken, and Fouks. The P=NP? question makes it very doubtful that truly efficient methods exist.

9.2 Resolution proofs and refutations

There is an important proof method called *Robinson’s Resolution Principle*. It can be applied to a DNF to test for a tautology and to a CNF to test for inconsistency (it is easy, but not very useful, to test a CNF for tautology or a DNF for inconsistency). The method is essentially the same for each.

We consider testing a CNF for inconsistency (i.e., whether it is contradictory).

The subformulae $L_i \vee L_{i+1} \vee \dots \vee L_j$ are called *clauses*. One regards each clause as a *set* of literals. This is acceptable because \vee is commutative and associative. One also views the CNF as a *set* of clauses, and repeatedly adds *resolvents* to the set of clauses.

Given two clauses C and C' , a *resolvent* of C and C' is constructed as follows. It is necessary that C contains a literal L whose complement \bar{L} occurs in C' . In this case suppose

$$C = L_1 \vee \dots \vee L_k \vee L \quad \text{and} \quad C' = L'_1 \vee \dots \vee L'_m \vee \bar{L}$$

then the clause obtained by *resolving* L and \bar{L} is

$$L_1 \vee \dots \vee L_k \vee L'_1 \vee \dots \vee L'_m.$$

It is possible that $k = m = 0$, in which case the resolvent is not a conventional formula but is called the *empty* clause and written \square .

Put differently:

$$C_1 \vee L, \quad C_2 \vee \bar{L} \quad \mapsto \quad C_1 \vee C_2$$

Note. We extend the definition of truth-value under a truth-assignment, by saying that a clause (in a CNF) is true if and only if at least one of the literals in the clause is true.

This extends the definition because \square is automatically false, whatever the interpretation.

It does no harm to regard a CNF as a *list* of clauses, or even a *set* of clauses in no particular order.

To construct a **Resolution refutation** of a CNF F means to start with F (as a list of clauses) and repeatedly add new clauses to the list by resolving clauses already present, until the list contains \square .

For example, Modus Ponens is another ‘inference rule’ (see ??):

From X and $X \implies Y$, infer Y .

The following is a kind of justification of Modus Ponens: we show that

$$X, \overline{X} \vee Y, \overline{Y}$$

are inconsistent.

$$\begin{aligned} & X, \overline{X} \vee Y, \overline{Y} \\ & X, \overline{X} \vee Y, \overline{Y}, Y \\ & X, \overline{X} \vee Y, \overline{Y}, Y, \square \end{aligned}$$

Or we may present the proof by listing the clauses as they are supplied or generated by resolution.

Given the CNF

$$A \vee D, \quad \overline{A} \vee \overline{D}, \quad \overline{A} \vee B \vee \overline{C}, \quad A \vee B \vee C, \quad \overline{B}, \quad D \vee C, \quad \overline{D} \vee \overline{C}$$

here is a resolution refutation (proof of inconsistency).

$$\begin{aligned} & A \vee B \vee C, \quad \overline{B} \quad \mapsto \quad A \vee C \\ & \overline{A} \vee B \vee \overline{C}, \quad \overline{B} \quad \mapsto \quad \overline{A} \vee \overline{C} \\ & A \vee C, \quad \overline{C} \vee \overline{D} \quad \mapsto \quad A \vee \overline{D} \\ & A \vee D, \quad A \vee \overline{D} \quad \mapsto \quad A \\ & A, \quad \overline{A} \vee \overline{D} \quad \mapsto \quad \overline{D} \\ & C \vee D, \quad \overline{D} \quad \mapsto \quad C \\ & \overline{A} \vee \overline{C}, \quad C \quad \mapsto \quad \overline{A} \\ & A, \quad \overline{A} \quad \mapsto \quad \square \end{aligned}$$

9.3 Proof trees

A resolution refutation can be given in a tree-like arrangement as illustrated in Figure 1.

(9.2) Lemma *Suppose that $C_1 \vee L$ and $C_2 \vee \overline{L}$ are clauses, and I is an interpretation satisfying both clauses. Then I also satisfies the resolvent $C_1 \vee C_2$.*

Figure 1: resolution proof tree

Proof. If L is false under I , then C_1 must be true under I . If L is true under I , then C_2 must be true under I . In either case, $C_1 \vee C_2$ is true under I . \blacksquare

(9.3) Lemma *Given a CNF S , if \square can be constructed from the clauses in S using resolution, then S is false in every interpretation.*

Proof. So (using the above lemma with induction) if I makes S true, then it makes all resolvents derived from S true, and makes \square true. However, \square is false under every interpretation. \blacksquare

(9.4) Definition *Let S be a set of clauses and L a literal.*

$$S \setminus L = (\text{def}) \quad \{C \setminus \{L\} : C \in S \wedge \bar{L} \notin C\}.$$

(9.5) Lemma *If D is a clause derivable from $S \setminus L$, then either D or $D \vee L$ is derivable from S .*

Proof. Induction on the length (number of clauses) of the derivation. The basis is where $D \in S \setminus L$, whence D or $D \vee L \in S$.

If $D = D_1 \vee D_2$ derived by resolution from $D_1 \vee X$ and $D_2 \vee \bar{X}$, then by induction $D_1 \vee X$ or $D_1 \vee X \vee L$, and $D_2 \vee \bar{X}$ or $D_2 \vee \bar{X} \vee L$, are derivable from S , whence either $D_1 \vee D_2$ or $D_1 \vee D_2 \vee L$ are derivable from S . \blacksquare

(9.6) Lemma *If S is inconsistent then $S \setminus L$ is inconsistent.*

Proof. Equivalently: if $S \setminus L$ is consistent, so is S .

Let I be a truth-assignment which makes every clause in $S \setminus L$ true. Every such clause is of the form D or $D \vee L$ where L does not occur in D . In any case, if we extend I so that it makes L false, it makes D and $D \vee L$ true.

This covers every clause in S which does not contain \bar{L} , and the ones which do contain it are also true under I . \blacksquare

(9.7) Theorem *A CNF S is inconsistent if and only if the empty clause is in S or can be generated from S by resolution.*

Sketch proof. The ‘if’ part has been mentioned already (9.3).

Only if: by induction on n , the number of boolean variables in S . Immediate if $n = 0$: $S = \emptyset$ (consistent) or $S = \{\square\}$ (inconsistent). If $n = 1$, S contains just one boolean variable X , and is inconsistent, then either $\square \in S$ or $X, \overline{X} \in S$, and in any case \square can be generated.

Induction: Choose $X \in S$. By the above lemma, $S \setminus X$ and $S \setminus \overline{X}$ are inconsistent. By the inductive hypothesis \square can be generated both from $S \setminus X$ and $S \setminus \overline{X}$.

By the above Lemma, \square or X can be derived from S , and \square or \overline{X} can be derived from S ; in any case, \square can be derived from S . ■

Example. $S = XY, \overline{X}Y, \overline{Y}$. $S \setminus X = Y, \overline{Y} \mapsto \square$. Thus from S , $XY, \overline{Y} \mapsto X$.

$S \setminus \overline{X} = Y, \overline{Y} \mapsto \square$. Thus from S , $\overline{X}Y, \overline{Y} \mapsto \overline{X}$.

Then $X, \overline{X} \mapsto \square$.