9 Resolution

9.1 The first goal of mathematical logic

(9.1) Definition Let F' be a boolean formula involving the variables Xy, ..., X,. An interpre-
tation or truth-assignment to F' is a map X, — T1,..., X, — T, where Ty, ..., T, is a vector
of truth-values. There are 2™ interpretations of F.

A boolean formula is a tautology if it is true in all interpretations, and it is inconsistent if
it 1s false in all interpretations.

The first goal is to provide methods for proving true things which are true.

At present, the ‘things’ are Boolean formulae, and ‘true’ means ‘tautology.’

A certain way of proving something (containing n Boolean variables) true is to check it
against all 2" interpretations — in other words, build the truth-table.

Resolution (see below) provides a generally more efficient method. It is not always very
efficient, as was shown at different times by Tseitin, Galil, Haken, and Fouks. The P=NP?
question makes it very doubtful that truly efficient methods exist.

9.2 Resolution proofs and refutations

There is an important proof method called Robinson’s Resolution Principle. It can be applied
to a DNF to test for a tautology and to a CNF to test for inconsistency (it is easy, but not very
useful, to test a CNF for tautology or a DNF for inconsistency). The method is essentially the
same for each.

We consider testing a CNF for inconsistency (i.e., whether it is contradictory).

The subformulae L; v L;i1 v ... v L; are called clauses. One regards each clause as a set
of literals. This is acceptable because v is commutative and associative. One also views the
CNF as a set of clauses, and repeatedly adds resolvents to the set of clauses.

Given two clauses C and C’, a resolvent of C' and C” is constructed as follows. It is necessary
that C contains a literal L whose complement L occurs in C’. In this case suppose

C=Lv...vL,vL and (' = ’1\/...\/L;nvf
then the clause obtained by resolving L and L is
Lyv...vLgvILiv...vL,.

It is possible that £k = m = 0, in which case the resolvent is not a conventional formula but is
called the empty clause and written [].
Put differently:

01\/L, CQVE > Cl\/CQ

Note. We extend the definition of truth-value under a truth-assignment, by saying that a
clause (in a CNF) is true if and only if at least one of the literals in the clause is true.
This extends the definition because [] is automatically false, whatever the interpretation.

It does no harm to regard a CNF as a list of clauses, or even a set of clauses in no particular

order.

To construct a Resolution refutation of
a CNF F means to start with F' (as a
list of clauses) and repeatedly add new
clauses to the list by resolving clauses al-
ready present, until the list contains [].

For example, Modus Ponens is another ‘inference rule’ (see 77):

From X and X = Y, infer Y.
The following is a kind of justification of Modus Ponens: we show that

X, XvYY
are inconsistent.
X, XvYY

X.XVvY,Y,Y
X, XvYY,Y.O

Or we may present the proof by listing the clauses as they are supplied or generated by

resolution.
Given the CNF

AvD, AvD, AvBvC, AvBvC, B, DvC, DvC

here is a resolution refutation (proof of inconsistency).

AvBvC, B — AvC
AvBvC, B — AvC
AvC, CvD — AvD
AvD, AvD — A
A, AvD — D
CvD, D — O
AvC, C — A

A A — O

9.3 Proof trees

A resolution refutation can be given in a tree-like arrangement as illustrated in Figure [l

(9.2) Lemma Suppose that C1v L and Cyv L are clauses, and I is an interpretation satisfying
both clauses. Then I also satisfies the resolvent Cy v Cs.

2

O
O
|
Ol
pd

B

ABC AD

Figure 1: resolution proof tree

Proof. If L is false under I, then C; must be true under I. If L is true under I, then Cy
must be true under /. In either case, C| v Cy is true under 1. |}

(9.3) Lemma Given a CNF S, if [can be constructed from the clauses in S using resolution,
then S is false in every interpretation.

Proof. So (using the above lemma with induction) if I makes S true, then it makes all
resolvents derived from S true, and makes [] true. However, [] is false under every interpreta-
tion. |

(9.4) Definition Let S be a set of clauses and L a literal.
S\L = (def) {C\{L}: CeSAL¢C}.

(9.5) Lemma If D is a clause derivable from S\L, then either D or D v L is derivable from
S.

Proof. Induction on the length (number of clauses) of the derivation. The basis is where
D e S\L, whence D or D v LeS.

If D = Dy v Dy derived by resolution from Dy v X and Dy v X, then by induction Dy v X
or Dy v Xv L, and Dy v X or Dy v X v L, are derivable from S, whence either D; v Ds or
Dy v Dy v L are derivable from S.]

(9.6) Lemma If S is inconsistent then S\L is inconsistent.

Proof. Equivalently: if S\L is consistent, so is S.

Let I be a truth-assignment which makes every clause in S\L true. Every such clause is
of the form D or D v L where L does not occur in D. In any case, if we extend [so that it
makes L false, it makes D and D v L true.

This covers every clause in S which does not contain L, and the ones which do contain it
are also true under 7. |

(9.7) Theorem A CNF S is inconsistent if and only if the empty clause is in S or can be
generated from S by resolution.

Sketch proof. The ‘if’ part has been mentioned already (@.3]).

Only if: by induction on n, the number of boolean variables in S. Immediate if n = 0:
S = J (consistent) or S = {1} (inconsistent). If n = 1, S contains just one boolean variable
X, and is inconsistent, then either [Je S or X, X € S, and in any case [] can be generated.

Induction: Choose X € S. By the above lemma, S\X and S\X are inconsistent. By the
inductive hypothesis [] can be generated both from S\X and S\X.

By the above Lemma, [Jor X can be derived from S, and [Jor X can be derived from S;
in any case, [] can be derived from S. |}

Example. S = XY, XYY. S\X = Y,_? — . Thus from S, XYY — X.
S\X = Y,Y — [Thus from S, XV,Y — X.
Then X, X — [].

	Resolution
	The first goal of mathematical logic
	Resolution proofs and refutations
	Proof trees

