
9 Resolution

9.1 The first goal of mathematical logic

(9.1) Definition Let F be a boolean formula involving the variables X1, . . . , Xn. An interpre-
tation or truth-assignment to F is a map X1 ÞÑ T1, . . . , Xn ÞÑ Tn, where T1, . . . , Tn is a vector

of truth-values. There are 2n interpretations of F .

A boolean formula is a tautology if it is true in all interpretations, and it is inconsistent if
it is false in all interpretations.

The first goal is to provide methods for proving true things which are true.
At present, the ‘things’ are Boolean formulae, and ‘true’ means ‘tautology.’
A certain way of proving something (containing n Boolean variables) true is to check it

against all 2n interpretations — in other words, build the truth-table.
Resolution (see below) provides a generally more efficient method. It is not always very

efficient, as was shown at different times by Tseitin, Galil, Haken, and Fouks. The P=NP?
question makes it very doubtful that truly efficient methods exist.

9.2 Resolution proofs and refutations

There is an important proof method called Robinson’s Resolution Principle. It can be applied
to a DNF to test for a tautology and to a CNF to test for inconsistency (it is easy, but not very
useful, to test a CNF for tautology or a DNF for inconsistency). The method is essentially the
same for each.

We consider testing a CNF for inconsistency (i.e., whether it is contradictory).
The subformulae Li _ Li�1 _ . . . _ Lj are called clauses. One regards each clause as a set

of literals. This is acceptable because _ is commutative and associative. One also views the
CNF as a set of clauses, and repeatedly adds resolvents to the set of clauses.

Given two clauses C and C 1, a resolvent of C and C 1 is constructed as follows. It is necessary
that C contains a literal L whose complement L occurs in C 1. In this case suppose

C � L1 _ . . ._ Lk _ L and C 1

� L1

1
_ . . ._ L1

m _ L

then the clause obtained by resolving L and L is

L1 _ . . ._ Lk _ L1

1
_ . . ._ L1

m.

It is possible that k � m � 0, in which case the resolvent is not a conventional formula but is
called the empty clause and written l.

Put differently:

C1 _ L, C2 _ L ÞÑ C1 _ C2

Note. We extend the definition of truth-value under a truth-assignment, by saying that a
clause (in a CNF) is true if and only if at least one of the literals in the clause is true.

This extends the definition because l is automatically false, whatever the interpretation.
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It does no harm to regard a CNF as a list of clauses, or even a set of clauses in no particular
order.

To construct a Resolution refutation of
a CNF F means to start with F (as a
list of clauses) and repeatedly add new
clauses to the list by resolving clauses al-
ready present, until the list contains l.

For example, Modus Ponens is another ‘inference rule’ (see ??):
From X and X ùñ Y , infer Y .

The following is a kind of justification of Modus Ponens: we show that

X,X _ Y, Y

are inconsistent.

X,X _ Y, Y

X,X _ Y, Y , Y

X,X _ Y, Y , Y,l

Or we may present the proof by listing the clauses as they are supplied or generated by
resolution.

Given the CNF

A_D, A_D, A_B _ C, A_B _ C, B, D _ C, D _ C

here is a resolution refutation (proof of inconsistency).

A_B _ C, B ÞÑ A_ C

A_B _ C, B ÞÑ A_ C

A_ C, C _D ÞÑ A_D

A_D, A_D ÞÑ A

A, A_D ÞÑ D

C _D, D ÞÑ C

A_ C, C ÞÑ A

A, A ÞÑ l

9.3 Proof trees

A resolution refutation can be given in a tree-like arrangement as illustrated in Figure 1.

(9.2) Lemma Suppose that C1_L and C2_L are clauses, and I is an interpretation satisfying

both clauses. Then I also satisfies the resolvent C1 _ C2.
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Figure 1: resolution proof tree

Proof. If L is false under I, then C1 must be true under I. If L is true under I, then C2

must be true under I. In either case, C1 _ C2 is true under I.

(9.3) Lemma Given a CNF S, if l can be constructed from the clauses in S using resolution,

then S is false in every interpretation.

Proof. So (using the above lemma with induction) if I makes S true, then it makes all
resolvents derived from S true, and makes l true. However, l is false under every interpreta-
tion.

(9.4) Definition Let S be a set of clauses and L a literal.

SzL � pdefq tCztLu : C P S ^ L R Cu.

(9.5) Lemma If D is a clause derivable from SzL, then either D or D _ L is derivable from

S.

Proof. Induction on the length (number of clauses) of the derivation. The basis is where
D P SzL, whence D or D _ L P S.

If D � D1_D2 derived by resolution from D1_X and D2_X, then by induction D1_X

or D1 _X _ L, and D2 _X or D2 _X _ L, are derivable from S, whence either D1 _D2 or
D1 _D2 _ L are derivable from S.

(9.6) Lemma If S is inconsistent then SzL is inconsistent.

Proof. Equivalently: if SzL is consistent, so is S.
Let I be a truth-assignment which makes every clause in SzL true. Every such clause is

of the form D or D _ L where L does not occur in D. In any case, if we extend I so that it
makes L false, it makes D and D _ L true.

This covers every clause in S which does not contain L, and the ones which do contain it
are also true under I.

(9.7) Theorem A CNF S is inconsistent if and only if the empty clause is in S or can be

generated from S by resolution.
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Sketch proof. The ‘if’ part has been mentioned already (9.3).
Only if: by induction on n, the number of boolean variables in S. Immediate if n � 0:

S � H (consistent) or S � tlu (inconsistent). If n � 1, S contains just one boolean variable
X, and is inconsistent, then either l P S or X,X P S, and in any case l can be generated.

Induction: Choose X P S. By the above lemma, SzX and SzX are inconsistent. By the
inductive hypothesis l can be generated both from SzX and SzX.

By the above Lemma, l or X can be derived from S, and l or X can be derived from S;
in any case, l can be derived from S.

Example. S � XY,XY, Y . SzX � Y, Y ÞÑ l. Thus from S, XY, Y ÞÑ X.
SzX � Y, Y ÞÑ l. Thus from S, XY, Y ÞÑ X.
Then X,X ÞÑ l.
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